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Abstract

We study the behavior of boundedly rational agents who play an infinitely repeated
symmetric 2 × 2 game according to a simple rule of thumb: each agent continues to
play the same action if the action generates one period payoff that exceeds the aspi-
ration level, which summarizes a history according to the average of the past payoffs,
and switches to the other action with a positive probability otherwise. By applying
the stochastic approximation technique (Kushner and Yin (1997)), we characterize
the asymptotic outcomes and patterns of behavior for the class of symmetric 2 × 2
games, thus significantly extending results from the previous studies (Karandikar,
Mookherjee, Ray, and Vega-Redondo (1998), Oechssler (2001), Posch (2001)). In a
coordination game, for example, the two players achieve cooperation with probability
one in the long run, while in the battle of the sexes, the outcome converges to either
one of the two Pareto efficient outcomes, depending on the history, provided that
the two players’ one-shot equilibrium payoffs are not too “unfair”. In the prisoners’
dilemma game, the players cooperate in the limit if and only if the gain from defecting
against cooperation is modest.

Keywords. aspiration, bounded rationality, cooperation, mean dynamics, recursive
learning, repeated games, satisficing behavior, stochastic approximation

∗We are grateful for helpful conversations with Oyama Daitsuke, Joseph Hofbauer, Michihiro Kandori,
Martin Posch, and especially, Dilip Mookherjee as well as seminar participants at University of Tokyo,
University of Illinois, University of Wisconsin, University of Vienna and Boston University. All remaining
errors are ours.

†Financial support from the National Science Foundation (SES-0004315) is gratefully acknowledged.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation. Department of Eco-
nomics, University of Illinois, 1206 S. 6th Street, Champaign, IL 61820 USA. E-mail: inkoocho@uiuc.edu.
Web site: www.cba.uiuc.edu/inkoocho .

‡Financial support from the Ministry of Education and Science of Japan is gratefully acknowledged.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Ministry. Faculty of Economics, University
of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN. E-mail: amatsui@e.u-tokyo.ac.jp. Web site:
www.e.u-tokyo.ac.jp/~amatsui .

1



1 Introduction

According to the theory of satisficing behavior (Simon (1987)), a decision maker satisfices
rather than optimizes.1 Instead of solving an optimization problem, a decision maker has
an aspiration level, and searches for a better alternative until he finds the one whose payoff
exceeds the aspiration level. Once he finds such an alternative, he quits his search and
sticks to it. The present paper examines the behavior of the satisficing decision makers
in 2 × 2 symmetric repeated games, and examines the dynamic patterns of outcomes
generated by the repeated interactions between the two satisficing agents.

We assume that each player continues to play the same action if the action generates
one period payoff that exceeds the aspiration level, which summarizes a history accord-
ing to the average of the past payoffs, and switches to the other action with a positive
probability otherwise.2 Focusing on the dynamic process of the aspiration levels, we study
the asymptotic properties of the average payoffs and the patterns of the behavior of the
decision makers.

However, the dynamic process of the aspiration levels might induce many different
asymptotic outcomes, some of which do not appear to be sensible. In order to identify
the sensible outcomes, we perturb the dynamics by introducing a small probability of
imperfection: with a small probability, the decision maker might choose an action other
than the one dictated by the “behavior” rule.

Because of the perturbation, the aspiration and the outcome of the game are rendered
stochastic. As the action influences the aspiration levels, which in turn determine the
future actions to be played, the evolution of the aspiration level exhibits a self-referential
feature (Marcet and Sargent (1989)). Formally, the dynamics of the aspiration levels can
be described as a state-dependent Markov process where the transition matrix of action
pairs is determined by the aspiration level. Consequently, the evolution of the aspiration
level and the resulting outcome path become non-stationary and history dependent, which
poses a considerable challenge.

This paper uses the stochastic approximation technique (e.g., Kushner and Yin (1997))
to investigate the asymptotic properties of the aspiration levels. Instead of directly inves-
tigating the non-stationary stochastic process, we approximate the sample paths of the
process by a trajectory induced by the deterministic process, which is called the mean dy-
namics or the ordinary differential equation (ODE) associated with the original process.
This approximation enables us to study the asymptotic properties, which would otherwise
be obscured by the complex stochastic perturbations. In our model, the associated ODE
has a particularly simple form, which helps us directly calculate the limit points for all
2 × 2 games and examine the stability of these points.

We can completely characterize the asymptotic properties of the aspiration levels and
the behavior of the players for symmetric 2 × 2 games. In the coordination game, we

1The satisficing behavior, or the “win-stay, lose-shift” principle, is observed in animal behavior as well
as in human behavior. Thorndike (1911) mentioned this type of behavior prior to Simon (1987).

2Gilboa and Schmeidler (2001, pp.147-148) states, “Realism means that the aspiration level is set closer
to the best average performance so far experienced.”
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have an intuition that the repeated interaction should promote cooperation between the
two players, which is what our model predicts. Although many other outcomes can be
sustained as a limit of deterministic dynamics, the Pareto efficient coordinating outcome
is the only stable outcome of the perturbed dynamics.

The technique of stochastic approximation can be equally applied to games that do
not have a unique Pareto efficient individually rational outcome such as the battle of the
sexes.3 In the battle of the sexes, we demonstrate that the learning dynamics lead to
either one of the two efficient outcomes, but which of the two limit outcomes is realized
depends upon the history. A similar analysis applies to the game of chicken.

In the prisoners’ dilemma game, our model predicts that cooperation is achieved
asymptotically if and only if the gain from defection is “modest.”4 If the gain is suffi-
ciently large, cooperation is not attained. We can still characterize the limit points of
the aspiration levels, from which one can infer the asymptotic behavior of the players. In
other words, the size of the gain from defection determines the stability of the cooperation
outcome.

In the prisoners’ dilemma, if one player defects while the other player cooperates, then
the cooperating player (who is double-crossed) receives the worst possible payoff of the
game. The double-crossed player immediately switches his action to punish the defector,
as we expect from the tit-for-tat strategy. Once both parties move to the non-cooperative
outcome, both players immediately realize how bad the non-cooperative outcome could be,
and move back to cooperation. If the gain from defection is not too large, this cycle harms
the original defector as well as the defected. Thus, cooperation sustains. On the other
hand, if the gain from defection is sufficiently large, the defector gains from the above cycle,
and therefore, temptation for deviation pushes the outcome away from cooperation, and
the cycle of cheating, punishment and cooperation repeats itself. As a result, the aspiration
level converges (roughly) to the points obtained as a convex combination of three outcomes:
cooperation, defection against cooperation and the one shot Nash equilibrium.5

Recently, the satisficing behavior has drawn considerable attention as an alternative
behavioral assumption in games.6 Gilboa and Schmeidler (1995) develops an axiomatic
foundation for the satisficing behavior, and Gilboa and Schmeidler (2000) examines a
more elaborate behavior by assuming that the agent adjusts the aspiration level as he
accumulates experiences.

Karandikar, Mookherjee, Ray, and Vega-Redondo (1998, KMRV), Sarin and Vahid
(1999), Oechssler (2001), and Posch (2001) focus on the component games which have a
unique Pareto efficient individually rational outcome.7 In KMRV, for example, each player
uses his own past payoffs to calculate the aspiration level, while in Oechssler (2001),
each player uses the average of the two players’ payoffs. Both papers show that in a

3The battle of the sexes has two such pure strategy outcomes. See (7.14).
4See (7.16). To be precise, the gain from defection is “modest” if g < 1.
5There are two of such points, depending upon who cheats first against the other player at the cooper-

ation outcome.
6Winter (1971) is a remarkable early example of the application of the satisficing behavior.
7Napel (2003) applies the method of KMRV to the ultimatum game.
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repeated game with a unique Pareto efficient individually rational point in pure strategies,
cooperation emerges in the limit. We freely borrow the basic elements of our model such
as the dynamics of the aspiration level and the behavior rule from these papers.

Posch, Pichler, and Sigmund (1999) is essentially a deterministic version of ours, and
considers all symmetric 2 × 2 games as we do. Since the model is deterministic, Posch,
Pichler, and Sigmund (1999) does not address the issues that are dealt with in the present
paper. As a result, for example, perpetual miscoordination arises in the coordination
games. Our analysis, therefore, shows how stochastic terms play a role, while following
the setup of the previous works closely.

At the same time, we significantly improve upon the existing studies, offering a com-
prehensive analysis for a larger class of games. By using the stochastic approximation
technique, we develop a unified method of analysis, and consequently, avoid various issues
arising from details of the specific games.8 Indeed, once we identify the basic dynamic
structure, the rest of the analysis is almost routine.

The technique of stochastic approximation has been used in the recursive learning liter-
ature in macroeconomics (e.g., Marcet and Sargent (1989), Evans and Honkapohja (2001))
and recently in evolutionary models (e.g., Benäim and Weibull (2001) and Sandholm and
Hofbauer (2002)). Benäim and Weibull (2001) applies the technique to study the rela-
tionship between stochastic dynamics and deterministic dynamics such as best response
dynamics in evolutionary models. In a repeated game between two players, each player
has significant influence on the outcome from the game, and the learning dynamics of the
two players are intertwined. As a result, the evolution of the state space is considerably
more complicated than in the existing models where the diverse behavior of the agents
is often aggregated into a one dimensional state variable. To handle the dynamics of the
state variable in the learning dynamics, the stochastic approximation technique appears
to be superior to the small perturbation method used in KMRV, for example, because of
simplicity and generality of analysis.

Our paper can be viewed as an equilibrium selection theory in the repeated games.
A number of attempts have been made to mitigate this problem of multiplicity since
the seminal paper of Aumann (1959). The main stream of these attempts is to choose
equilibria that can be attained by the boundedly rational players. Depending upon how
restrictive the bound on the rationality is, we can classify the general approaches into two
groups.

The first is to maintain the optimizing behavior while limiting the computational
capability of the decision maker but often endowing the agent with the ability to compute
an equilibrium (e.g., Rubinstein (1986), Abreu and Rubinstein (1988), Aumann and Sorin
(1989)). The second approach imposes a very tight bound on the computational capability
of the decision maker by assuming adaptive and/or imitating behavior (e.g., Carmichael
and McLeod (1997) and Vega-Redondo (1997)). The satisficing behavior falls in between

8For example, we do not have to introduce the kind of mutation on top of perturbation as was necessary
in KMRV. Also, we do not encounter some of the problems that the previous works would encounter when
one tries to study the games which have multiple individually rational pure strategy outcomes that are
Pareto efficient such as the battle of the sexes.
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these two formulations. In the equilibrium approach with optimizing agents, players have
limited capacity to implement their strategies, they have unlimited capacity to read the
opponent’s strategy, or at least there is assumed to be a mechanism by which equilibrium is
attained. On the other hand, the second, adaptive and/or imitating, behavior corresponds
to the evolutionary approach. Players are not required to have a sufficient amount of
computational capacity and can even be viewed as mindless genes who are subject to the
survival of the fittest. Satisficing behavior has been developed as the theory of human
behavior which is neither perfectly rational nor completely “mindless.”9

The satisficing behavior (or case-based decision theory) has been criticized for lacking
fruitful application. Indeed, in single-person decision making problems, the expected
utility theory and the case-based decision theory are equivalent in the sense that one
can be embedded in the other as proven by Matsui (2000). The present paper shows,
however, that the two theories produce very different results in the two-player world. This
is because the satisficing behavior does not require an initial belief to be formed.

The rest of the paper is organized as follows. Section 2 presents the basic model
with the deterministic behavior rule. Section 3 considers an example of common interest
games to illustrate what the learning dynamics can implement in the limit and how we
should refine the limit point to select the sensible outcome. Section 4 formalizes the idea
of perturbing the decision rule. Section 5 formally presents a model with perturbation.
Section 6 explains the technique of stochastic approximation. Section 7 characterizes the
stability points of the stochastic dynamics in 2 × 2 games. Section 8 analyzes a model
in which the aspiration level is determined as a convex combination of the two players’
payoffs in order to illustrate how our analysis applies to a larger class of models including
Posch (2001) and Oechssler (2001). Section 9 concludes the paper.

2 Unperturbed model

Consider two players who play a 2 × 2 game

G = 〈{C,D}, {C,D};u1 , u2〉

infinitely many times, where C and D are the actions available for each player and

ui : {C,D} × {C,D} → R i = 1, 2

is the payoff function of the one shot game. Let st ∈ {C,D}2 be an outcome in period t.
A history is a sequence of outcomes, and a repeated game strategy is a mapping from a
history to an action si ∈ {C,D}. Let us assume that each individual player is sufficiently
patient so that the long run cooperation at (C,C) can be sustained by some equilibrium
of the infinitely repeated game.

9The difference between adaptive behavior and satisficing behavior might be just a matter of interpre-
tation. However, we would like to draw the line in the sense that the latter has been developed as the
model of human behavior that is not conceivable in genetic behavior.
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Instead of a fully rational player, we model each player as a boundedly rational decision
maker who summarizes a past history into a single state variable according to a simple
rule of thumb, which we call the aspiration level. Let ai,t be the aspiration level of player i
at the t-th round, which is calculated as the average of the past payoffs:

ai,t =
1
t

t∑
τ=1

ui(sτ ).

Note that ai,t can be written recursively as

ai,t = ai,t−1 + γt (ui(st) − ai,t−1) (2.1)

where
γt =

1
t
.

Note that as player i summarizes a history into the average payoff in the past, he suppresses
much information that could have been used for making a choice, such as the precise
sequence of outcomes.10

The aspiration level ai,t is the level of payoff which player i expects from action si,t in
period t, based on his own past experience. Thus, if player i has entertained a sequence of
high payoffs, it seems natural that player i continues to expect to receive a high payoff from
his action, and vice versa. If today’s payoff ui(st) from player i’s action si,t ∈ Si = {C,D}
exceeds aspiration level at

i, then player i takes si in the t+1st period. If ui(st) ≤ at
i holds,

then player i takes s′i �= si in the next period. To describe the behavior rule rigorously, let
−si be the action other than si ∈ {C,D}:

{−si} = {C,D} \ {si}.
For all i ∈ {1, 2},

si,t+1 =

{
si,t if ui(s1,t, s2,t) > ai,t

(1 − p)[−si,t] + p[si,t] if ui(s1,t, s2,t) ≤ ai,t,
(2.2)

where p ∈ (0, 1) represents inertia, and (1 − p)[−si,t] + p[si,t] is a mixed strategy over si,t

and −si,t with si,t being played with probability p.
We introduce the inertia to capture the idea of the switching cost. That is, once a

player chooses an action, it would be more difficult to switch to another action than to
play the same action in the next round (cf. KMRV). One can interpret p close to 0 as a
minimal switching cost. Similarly, if p is close to 1, the switching cost is so large that the
agent might not move to the alternative action.

The inertia will play an important role in breaking a seemingly unrealistic coordina-
tion failure of actions between the two players. Without inertia, players could end up

10The following analysis will be valid with some modification even if γt is constant across time. In that
case, γt = γ has to be sufficiently small, and the notion of convergence to be used will be the convergence
in distribution as opposed to the strong convergence.

6



simultaneously switching back and forth between two off-diagonal action profiles in, say, a
repeated coordination game, which will be shown in Section 3. No conclusion of the paper
is sensitive to the specific tie breaking rule in (2.2). We shall exclude the mixed strategy
for the moment.

Combining (2.1) and (2.2) for given initial aspiration levels a0 = (a1,0, a2,0) and actions
s0 = (s1,0, s2,0), we can generate {at, st}∞t=1. We are most interested in characterizing the
asymptotic properties of {at, st}∞t=1 in order to understand the asymptotic behavior of the
players.

3 Example

Let us consider the following coordination game

( C D

C 1, 1 −1, −1
D −1, −1 0, 0

)
(3.3)

in order to illustrate the learning dynamics. Assume throughout this example that the
initial aspiration level ai,0 for player i is slightly less than 0, say −0.1.

If each player chooses C in the initial round, then the realized payoff for player i is 1,
which is strictly larger than his aspiration level in the initial round −0.1. Thus, player
i chooses C in the next round. Because the average payoff is less than the payoff from
(C,C), each player keeps playing C so that the aspiration vector at = (a1,t, a2,t) converges
to (1, 1), which is the most sensible outcome from this game.

Perpetual coordination failure is avoided thanks to inertia. If it were not for inertia,
(C,D) would be followed by (D,C) without fail provided that the aspiration level for each
player is above −1; (D,C) and (C,D) would alternate, and no desirable outcome would
be attained.

While we can sustain the Pareto efficient coordination outcome through the aspiration
learning process, we can also sustain other outcomes, which are far less intuitive. Suppose
that the initial action pair is (D,D). Then following behavior rule (2.2), the action pair
stays at (D,D), while the aspiration level pair converges to (0, 0) from below, but never
exceeds it.

The convergence process is not stable. For example, suppose that each player exper-
iments by playing a different action with a small probability ρ > 0, which could be also
interpreted as the probability of making a mistake. Then with a small, but positive, prob-
ability ρ > 0, one of the two players switches his action to C to reach either (C,D) or
(D,C), which is followed by (C,C) with a positive probability of p(1−p), i.e., cooperation
is achieved. Once (C,C) is realized, the two players maintain C since the realized payoff
ui(C,C) = 1 exceeds the aspiration level. The repetition of the inefficient coordinating
outcome is not robust against a small probability of mistakes.

While informal, this example reveals the need for small perturbations to eliminate
unintuitive outcomes. To this end, we introduce a small probability of choosing a different
action from what is instructed, which is the subject of the next section.

7



4 Approximation by a smooth function

Note that the behavior rule is represented by a step function of

ui(st) − ai,t.

If ui(st)−ai,t > 0, then player i chooses the same action in period t+1 as he did in period
t. Otherwise, he switches to another action. The discontinuity occurs at the point where
ui(st) − ai,t = 0.

We perturb this decision rule by introducing a small amount of imperfection in switch-
ing decisions. If |ui(st)− ai,t| is large, then it is very clear that the present action exceeds
or falls short of the aspiration level expected from the action. Thus, there is little chance
to get confused about switching the action. On the other hand, if |ui(st)− ai,t| is close to
0, then the agent might not be so sure about whether to switch the action or not. Each
player is suspicious about the possibility of imperfect observation, or a small observational
error. Thus, when |ui(st) − ai,t| is small, player i has a good reason to hesitate to accept
the observation at its face value.

To formulate this idea, let hi : R → (0, 1) be a continuously differentiable weakly
increasing function satisfying the following properties:

lim
x→∞hi(x) = 1, and lim

x→−∞hi(x) = p. (4.4)

We call such hi a sigmoid function.
Let hi (ui(st) − ai,t) be the probability that player i chooses the same action in t+1 as

in t. Because hi is strictly increasing, player i will choose the same action in period t + 1
with a large probability if ui(st) − ai,t > 0 is very large. Similarly, if the present payoff
ui(st) falls “far” below aspiration level ai,t, then player i switches to another action with
a large probability, albeit subject to inertia.

It is not necessary that hi(x) be greater than p, and strictly smaller than 1 over the
entire domain of x. We impose this condition only to simplify the analysis. The same
analysis applies as long as there exists ε > 0 such that 0 < hi(x) < 1 for all x ∈ Nε(0),
where Nε(0) is the ε-neighborhood of 0. On the other hand, it is essential that

0 < hi(0) < 1

which forces player i to experiment with a positive frequency as long as ui(st) − ai,t is
close to 0, regardless of its sign.11

11KMRV used a different sigmoid function h̃i satisfying h̃i(0) = 1 so that for ∀x ≥ 0, h̃i(x) = 1. That
is, as long as ui(st) − ai,t ≥ 0, si,t+1 = si,t with probability one. This seemingly minor difference leads
to profoundly different asymptotic properties of the learning dynamics in the prisoner’s dilemma game
when the gain from deviation against cooperation is large, i.e., g > 1. While we predict that cooperation
outcome is not stable, KMRV predicts the cooperation is the only limit point of the learning dynamics.
One can view our model as the “perturbed” version of KMRV in the sense that player i’s behavior rule is
subject to a tremble regardless of the sign of ui(st) − ai,t.
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5 Perturbed model

Let us consider the sigmoid function hi defined as (4.4). If the present payoff falls below
the aspiration level, player i can stick to the present action with probability p. For a pair
h and h′ of increasing real valued functions over R, let d(h, h′) be the Hausdorff metric
of the graphs of h and h′ in R

2. In particular, if h′ is a step function and h is a sigmoid
function, d(h, h′) → 0 implies that h(x) − h′(x) → 0 pointwise except at discontinuous
points. Define

h
p(x) = p + (1 − p)1x≥0

where 1W is the characteristic function of event W : 1W = 1 if the state is in W , and 0
otherwise. We omit p to write h whenever there is no risk of confusion. We are interested
in the dynamics in the limit of the sigmoid functions which converge to h.

We arrange the elements of S according to the following order:

(C,C), (C,D), (D,C), (D,D)

and let σ ∈ ∆4 (which is a row vector in the unit simplex of R
4) be the probability

distribution over S. Let P (a) = (ps′s(a)) be the transition matrix induced by hi where

ps′s(a) =

[
h1(u1(s′) − a1)1s1=s′1 + (1 − h1(u1(s′) − a1))

(
1 − 1s1=s′1

)]
×

[
h2(u2(s′) − a2)1s2=s′2 + (1 − h2(u2(s′) − a2))

(
1 − 1s2=s′2

)]
is the element in the s′-th row and s-th column. Note that every component of P (a) is a
strictly positive differentiable function of a = (a1, a2). Similarly, define P (a) = (ps′s(a))
induced by h in which

ps′s(a) =

[
h1(u1(s′) − a1)1s1=s′1 +

(
1 − h1(u1(s′) − a1)

) (
1 − 1s1=s′1

)]
×

[
h2(u2(s′) − a2)1s2=s′2 +

(
1 − h2(u2(s′) − a2)

) (
1 − 1s2=s′2

)]
.

Note that
σP (a)

represents the action realized in the present round, conditioned on the previous pair of
actions, σ, and aspiration vector a. Let u be a 4 × 2 matrix obtained by arranging the
component game payoff:

u =




u1(C,C) u2(C,C)
u1(C,D) u2(C,D)
u1(D,C) u2(D,C)
u1(D,D) u2(D,D)


 .

Given an action distribution σ, σ · u represents the expected payoff vector.
It would be useful to review some of the properties of P (a).
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Lemma 5.1 [1] For any a, P (a) is irreducible and aperiodic so that it has a unique
invariant distribution σ∗

a satisfying

σ∗
a = σ∗

aP (a)

and for any initial condition σ0,

lim
t→∞σ0P

t(a) = σ∗
a.

[2] σ∗
a is continuous with respect to a.

[3] If P (a) has a unique invariant distribution σa, then σ∗
a converges to σa as d(hi, h) →

0.

The first property allows us to “represent” P (a) by its invariant distribution, which
significantly simplifies the characterization of the learning dynamics. Because the invariant
distribution changes continuously with respect to the transition matrix, we often “approx-
imate” transition matrix P (a) by P (a), which has a significantly simpler structure than
P (a).

6 Stochastic approximation

To investigate the dynamics of at, one can examine the sample path induced by st and at in
discrete time. Instead, we examine continuous time approximations of st and at obtained
by proper interpolations. This detour illuminates the key analytic method, which is also
used to examine the stochastic dynamics. To make this paper self-contained, we briefly
summarize the classic results from the stochastic approximation, needed for our analysis,
mostly from Kushner and Yin (1997).

Recall (2.1). For K = 1, 2, . . ., define

tK =
K∑

t=1

γt

as the total amount of (fictitious) time that is needed to play K rounds. We view u(st)−
at−1 as the amount of change of the aspiration level during 1 unit of (fictitious) time, and
γt as the amount of (fictitious) time assigned to this round t. Thus, the net change that
can be made to the aspiration level during the t-th round that lasts γt units of (fictitious)
time is γt (u(st) − at−1). For ∀τ > 0, there is a unique K such that

tK−1 ≤ τ < tK .

Define m(τ) = K as the first round that passes τ time. Let a(τ) be the continuous time
process obtained from at through linear interpolation. For τ ∈ [tK−1, tK),

a(τ) =
tK − τ

γK
aK−1 +

τ − tK−1

γK
aK .
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Because the action space is discrete, we construct the continuous time counterpart s(τ) of
st through constant (not linear) interpolation:

s(τ) = sK−1 ∀τ ∈ [tK−1, tK).

To understand the asymptotic properties of at, it suffices to examine the trajectory
of a(τ). For a small τ > 0, the trajectory of a(τ) is jagged. However, as τ → ∞, the
gain function γt becomes smaller so that the trajectory of a(τ) becomes “smoother.” To
formalize this intuition, let us fix τ > 0 and consider

a(tK + τ) − a(tK). (6.5)

We then rescale the time by setting tK equal to 0, which is called the left shift of time.
Define

aK(τ) = a(tK + τ).

Then, (6.5) can be written as
aK(τ) − aK(0). (6.6)

If the behavior rule is deterministic, σ is a degenerate probability distribution that is
concentrated on a particular pair of actions. We use σ in place of the pair of actions.

Recall that
σt−1P (at−1) = σt.

Define
δMt = u(st) − σtu

which is a martingale difference:

EtδMt = 0 ∀t ≥ 1

where Et is the expectation conditioned on information available at period t, because st

is distributed according to σt. Clearly,

|δMt| ≤ max
s,s′,i

|ui(s) − ui(s′)|.

To simplify notation, let us define O(h) as a function satisfying

lim
h→0

O(h) = 0.

For a fixed τ > 0,

aK(τ) − aK(0)

=
m(tK+τ)−1∑

t=K+1

γt(u(st) − at−1) + O(γm(tK+τ))

=
m(tK+τ)−1∑

t=K+1

γt(σt−1P (at−1)u − at−1) +
m(tK+τ)−1∑

t=K+1

γtδMt + O(γm(tK+τ)).
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Note that for ∀τ > 0, there exist K ′,M > 0 such that ∀K ≥ K ′,

aK(τ) − aK(0)
τ

≤ M.

Define
δt−1 = at−1 − aK(0)

for t ≥ K + 1. Note that

σt−1P (at−1) = σKP (aK)P (aK+1) · · ·P (at−1) = σKP (aK)P (aK + δ1) · · ·P (aK + δt−1).

Consider
bt = aKP (aK) · · ·P (aK + δt).

Since {bt} and {at} are contained in compact sets, each sequence has a convergent subse-
quence. After renumbering the sequences, we have bt → b∗ and δt → δ∗ for some b∗, δ∗.
Since P (a) is a continuous function of a,

b∗P (aK + δ∗) = b∗.

Given τ > 0,
‖b∗ − σ∗

aK
‖ = O(τ)

where
σ∗

aK
P (aK) = σ∗

aK
,

because P (a) is uniformly continuous and has a unique invariant distribution for each a.
Then, we have

aK(τ) − aK(0)

=
m(tK+τ)−1∑

t=K+1

γt (σKP (aK) · · ·P (at−1)u − at−1) +
m(tK+τ)−1∑

t=K+1

γtδMt + O(γm(tK+τ))

=
m(tK+τ)−1∑

t=K+1

γt

(
σKP t−K(aK)u − at−1

)
+

m(tK+τ)−1∑
t=K+1

γtδMt + O(γm(tK+τ))

=
m(tK+τ)−1∑

t=K+1

γt

(
σ∗

aK
u − at−1

)
+

m(tK+τ)−1∑
t=K+1

γtδMt + O(γm(tK+τ)) + τO(1/K)

where the last equality follows from the fact that σ∗
aK

is the unique invariant distribution
of P (aK). Since the invariant distribution σ∗

a is a continuous function of a,

|σ∗
at−1

− σ∗
aK

| ≤ O(τ) ∀t ∈ {K + 1, . . . ,m(tK + τ) − 1}.

12



Thus, we have

aK(τ) − aK(0)

=
m(tK+τ)−1∑

t=K+1

γt

(
σ∗

at−1
u − at−1

)
+

m(tK+τ)−1∑
t=K+1

γtδMt + O(γm(tK+τ)) + τO(1/K) + τO(τ).

Note that the first term approximates the Riemann integration:

m(tK+τ)−1∑
t=K+1

γt

(
σ∗

aK
u − at−1

)
=

∫ τ

0
σ∗

au − a(τ ′)dτ ′ + τO(1/K)

where O(1/K) is the interpolation error arising from the Riemann integration. Therefore,

aK(τ) − aK(0) =
∫ τ

0
σ∗

au − a(τ ′)dτ ′ +
m(tK+τ)−1∑

t=K+1

γtδMt

+O(γm(tK+τ)) + τO(1/K) + τO(τ) + τO(1/K). (6.7)

Note that except for the first term, the remaining terms on the right hand side are
“small” if τ > 0 is small and K is large. Thus, it would be reasonable to expect that the
right hand side is “dominated” by the first term, or more formally, the trajectory of the
right hand side is close to the trajectory induced by the first term.

Let us consider an ordinary differential equation (ODE)

a(τ) − a(0) =
∫ τ

0
σ∗

a(τ ′)u − a(τ ′)dτ ′

or equivalently,
da

dτ
= σ∗

a(τ)u − a(τ) (6.8)

for a given initial condition a(0), where

σ∗
a = σ∗

aP (a).

To simplify notation, we often write the right hand side of ODE as Ψ:

ȧ ≡ Ψ(a) = [Ψ1(a),Ψ2(a)] . (6.9)

We call (6.9) the associated ODE, or the mean dynamics of at.
In fact, this approximation result can be proved for any τ > 0 as K → ∞, which is

the fundamental result first proved by Ljung (1977) and Kushner and Clark (1978).

Lemma 6.1 For any τ > 0,

lim
K→∞

aK(τ) − aK(0) −
∫ τ

0
Ψ(τ ′)dτ ′ = 0

with probability one.

13



Proof. See Appendix A.

Lemma 6.1 is key to approximating a jagged stochastic process by a differentiable
deterministic path induced by the associated mean dynamics. Once we find the mean
dynamics, what remains is to characterize its solution. Therefore, the main task would be
to calculate the deterministic process given by (6.9).

Definition 6.2 a∗ ∈ R
2 is a stationary state if

Ψ(a∗) = 0.

Stability of stationary states is central for our analysis.

Definition 6.3 A stationary state a∗ is locally stable (in the sense of Lyapunov) if there
exists ρ > 0 such that if a(0) ∈ Nρ(a∗), then for all ρ ∈ (0, ρ), there exists T > 0 such that
for all τ ≥ T , a(τ) ∈ Nρ(a∗), where Nρ(·) is the open ball with radius ρ.

If a∗ is not locally stable (in the sense of Lyapunov), then we say a∗ is not stable. If
a∗ is locally stable (in the sense of Lyapunov) where the entire space is the domain of
attraction, then a∗ is globally stable.

Although the class of games we analyze has no limit cycle in the system, one might
want to generalize the notion to a set-valued one. In that case, we may replace the set of
locally stable states by the following notion of set-valued stability.

Definition 6.4 We say that the set K is a locally stable set with respect to (6.9) if K is
a minimal compact set with respect to the following properties. There exists ρ > 0 such
that for all ρ ∈ (0, ρ) and for all a(0) ∈ Nρ(K), there exists T > 0 such that for all τ ≥ T ,
a(τ) ∈ Nρ(K).

This condition says that if at ∈ K, then the trajectory must converge to K. This
condition still admits the possibility that at oscillates between two different points in K.

The next theorem, which is adopted from the standard convergence theorem in the
stochastic approximation literature, is central for our investigation.

Theorem 6.5 Suppose that K is the family of locally stable sets of (6.9) with the domain
of attraction containing V . Then for all a0 ∈ R

2 and all s0,

at → K
with probability one.

Proof. See Appendix B.

By invoking Theorem 2 of Woodford (1990), we can also show that if a stationary
state is not locally stable, then the asymptotic probability distribution of at assigns 0
probability to its neighborhood. Thus, the asymptotic probability distribution of at must
be concentrated at the neighborhood of the stable states of (6.9).

In principle, the limit set K depends upon a pair of sigmoid functions h = (h1, h2).
Given h, let Kh be the limit set as selected in Theorem 6.5. In the following section, we
are interested in the limit of Kh as h converges to h.
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7 Analysis

By Theorem 6.5, it suffices to analyze the stable states of (6.9) to characterize the asymp-
totic distribution of the aspiration levels induced by the learning dynamics. Although the
complexity of the analysis varies substantially for different games, these games have the
same underlying properties, some of which we shall see first.

Let V be the set of all feasible payoff vectors:

V =

{∑
s∈S

αsu(s) | αs ≥ 0,
∑
s∈S

αs = 1

}
. (7.10)

Since we consider the case of a small amount of perturbation, each component of the
transition matrix P (a) is approximated by P (a) induced by h except at thresholds. Recall
that for a fixed p, h is completely determined by

(u1(s) − a1, u2(s) − a2).

Thus, it is convenient to partition V into

S = {S1, . . . ,SM}
where for all m = 1, . . . ,M ,

a, a′ ∈ Sm if and only if ∀s ∈ S, ∀i = 1, 2, ai > ui(s) ⇒ a′i > ui(s).

For any a and a′ in the same quadrant Sm, P (a) = P (a′) = Pm.
Take an arbitrary Sm. Then calculate an invariant distribution σm = σmPm. The

unperturbed dynamics in this quadrant are approximated by

da

dt
= σm(s)u − a. (7.11)

Note that some component in P (a) might be zero, and therefore, P (a) may have
multiple invariant distributions. On the other hand, thanks to the sigmoid function hi,
P (a) is aperiodic and irreducible, and therefore, P (a) has a unique invariant distribution.

If P (a) has a unique invariant distribution, then Lemma 5.1 [3] implies that the invari-
ant distribution of P (a) converges to that of P (a). If, on the other hand, P (a) has multiple
invariant distributions, the upper hemi-continuity property of the invariant distribution
holds: when d(hi, h) is small, the invariant distribution of P (a) must be close to some, if
not all, invariant distribution of P (a).

Because the mean dynamics are dictated by the invariant distribution of P (a), we can
replace P (a) by P (a) (with some care when P (a) has multiple invariant distributions).
Because the calculation of the invariant distribution is easy, and does not require any
specific details of the component game, it is straightforward to analyze any 2 × 2 game
by using the same method. In this paper, we examine only symmetric 2× 2 games, while
leaving other 2 × 2 games for interested readers.
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7.1 Coordination games

In order to illuminate the basic idea of the analysis, we first reexamine the pure coor-
dination game (3.3) and demonstrate that the sigmoid function and the inertia help the
aspiration level converge to u(C,C).

In (3.3), we have
V = {(a1, a2) | − 1 ≤ a1 = a2 ≤ 1} .

We partition V into two pieces:

A = {(a1, a2) | − 1 ≤ a1 = a2 ≤ 0}

and
B = {(a1, a2) | 0 < a1 = a2 ≤ 1} ,

which are line segments in R
2. If a ∈ A, then P (a) is given by

P (a) =




1 0 0 0
p(1 − p) (1 − p)2 p2 p(1 − p)
p(1 − p) p2 (1 − p)2 p(1 − p)

0 0 0 1


 .

Note that P (a) has multiple invariant distributions that are convex combinations of

σ∗
a = (1, 0, 0, 0)

and
σ∗

a = (0, 0, 0, 1),

which implies that the mean dynamics


da1

dt

da2

dt


 =




∑
s∈S σ∗

a(s)u1(s) − a1∑
s∈S σ∗

a(s)u2(s) − a2


 (7.12)

for each i, where
σ∗

a = σ∗
aP (a).

Recall that the invariant distribution of P (a) must be close to some invariant distribution
of P (a) as d(hi, h) → 0 for ∀i. For any invariant distribution of P (a),

dai

dt
=

∑
s∈S

σ∗
a(s)ui(s) − ai > 0 ∀ai ≤ ui(D,D) − ρ,∀ρ > 0.

Hence, if the aspiration level of each player i is below ui(D,D), then the learning dynamics
must increase the aspiration level up to ui(D,D) in finite periods.
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It is instructive to see the role of inertia. If there were no inertia so that

p = 0,

then P (a) would have an invariant distribution different from those already identified
above:

σ∗
a =

(
0,

1
2
,
1
2
, 0

)
.

This invariant distribution is attained as the outcome alternates between (C,D) and
(D,C); in each of these outcomes, the two players synchronously switch to the other
action since each player is dissatisfied with the performance of his present choice. By
introducing inertia, i.e., assuming p > 0, either (C,C) or (D,D) is realized with a positive
probability, both of which are absorbing states. As a result, the two players escape almost
surely from perpetual coordination failure.

Once the aspiration level approaches u(D,D), the perturbation introduced by the
sigmoid function plays an important role. By the definition of the sigmoid function, there
exists ε > 0 such that

ε < hi(0) < 1 − ε.

For an aspiration vector a = (a1, a2) in the neighborhood of u(D,D) = (0, 0), the transition
matrix P (a) can be approximated by


1 0 0 0

p(1 − p) (1 − p)2 p2 p(1 − p)
p(1 − p) p2 (1 − p)2 p(1 − p)

q1q2 q1(1 − q2) q2(1 − q1) (1 − q1)(1 − q2)




where qi = hi(ui(s) − ai) ∈ (0, 1) and ui(s) − ai � 0. One can easily verify that this
transition matrix has a unique invariant distribution

(1, 0, 0, 0).

As a result, the mean dynamics at aspiration vector a = (a1, a2) around the neighborhood
of u(D,D) are

dai

dt
= ui(C,C) − ai > 0 ∀i = 1, 2.

That is, as the aspiration level approaches ui(D,D), player i experiments more often as
(D,D) is realized. As a result, (C,C), which is an absorbing state, is realized with a
positive probability.

Our analysis so far indicates that if the initial aspiration level of player i is below
ui(D,D) = 0, then the aspiration level should continue to increase so that it can go
beyond ui(D,D) in a finite period of time. Our remaining step is to show that if a ∈ A,
then its mean dynamics must converge to the neighborhood of u(C,C) = (1, 1). We
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essentially repeat the same logic as before. For small ρ > 0, a ∈ A and ai > ui(D,D) + ρ,
the transition matrix P (a) can be approximated by

P (a) =




1 0 0 0
p(1 − p) (1 − p)2 p2 p(1 − p)
p(1 − p) p2 (1 − p)2 p(1 − p)

p2 p(1 − p) p(1 − p) (1 − p)2




which has a unique invariant distribution

σ∗
a = (1, 0, 0, 0).

As P (a) converges to P (a), so does its invariant distribution. Thus, the mean dynamics
can be approximated by

dai

dt
= ui(C,C) − ai ≥ 0,

and the equality holds only if ai = ui(C,C). This proves that for ∀a0 and ∀ρ > 0,
∃ε > 0 such that if d(hi, h) < ε for all i, then there exists T > 0 such that for all t ≥ T ,
ai(t) ≥ ui(C,C) − ρ where a(t) is induced by (6.9). Then, by invoking Theorem 6.5, we
conclude that

at → Nρ(u(C,C))

with probability one. Since the only way to achieve an average payoff close to ui(C,C)
is to play (C,C) almost always, this convergence result also implies that st = (C,C) for
almost all t ≥ 1.

Albeit tedious, one can apply precisely the same logic to a general coordination game:

( C D

C 1, 1 �, g
D g, � 0, 0

)
, (7.13)

where g, � < 0, in order to prove that for all ρ > 0, there exists ε > 0 such that if
d(hi, h) < ε for all i = 1, 2, then

at → Nρ(u(C,C))

with probability one.

7.2 Battle of the sexes

While KMRV, Oechssler (2001) and Posch (2001) also show that the efficient coordination
outcome is achieved in the coordination game, their result is restricted to the component
games which have a symmetric Pareto efficient (pure strategy) outcome. In contrast, our
method can be applied to any 2 × 2 games that do not have a symmetric Pareto efficient
outcome such as the battle of the sexes:

( C D

C 0, 0 1, 1 + g
D 1 + g, 1 0, 0

)
(7.14)
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where g > 0. Because the analysis of the battle of the sexes follows precisely the same
logic as the coordination game, we only sketch the proof. Let V be the set of feasible
payoff vectors and partition V into 4 different regions:

A = {(u1, u2) ∈ V |u1, u2 < 1},
B = {(u1, u2) ∈ V |u1 < 1, u2 ≥ 1},
B′ = {(u1, u2) ∈ V |u1 ≥ 1, u2 < 1},
C = {(u1, u2) ∈ V |u1, u2 ≥ 1},

as depicted in Figure 1. Note that Region B′ is the mirror image of B.

�

�
0

u2

u1

A

u(C,D)

u(D,C)
B C

B′

Figure 1: Battle of the Sexes

In Region A, once (C,D) is chosen, the payoff is higher than the aspiration level for
both players, and therefore, the two players continue to play (C,D) with a high probability
except in the neighborhood of the boundary of A. The same thing can be said of (D,C).

If, on the other hand, either (C,C) or (D,D) is realized, then the aspiration level
(weakly) exceeds the payoff for both players. Therefore, with a probability of 2p(1 − p),
the action pair switches to either (C,D) or (D,C). Thus, if t is sufficiently large, the
system moves to one of the off-diagonal action pairs very soon without changing at’s too
much, and stays there for a sufficiently long time.

In Region B (resp. B′), using the same logic as above, we can verify that, for a
sufficiently large t, the system moves to u(C,D) (resp. u(D,C)) and stays there with a
high probability.

Region C determines the global stability of the system. The transition matrix in this
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region is approximated by:


p2 p(1 − p) p(1 − p) (1 − p)2

0 p 0 1 − p
0 0 p 1 − p

(1 − p)2 p(1 − p) p(1 − p) p2


 .

Thus, the system moves toward u∗ provided that limt→∞ γt = 0 where u∗ is calculated
from a stationary distribution σ∗ of the above transition matrix, i.e.,

σ∗ =
1

2 + 4p
(1 − p, 2p, 2p, 1 + p) .

Therefore, we have
u∗ = σ∗ · u =

p

1 + 2p
(2 + g, 2 + g).

Let us perturb the decision rule by replacing the step function h by the sigmoid function
hi (i = 1, 2) defined in Section 4. By the definition of hi, each player is subject to a small
probability of making “mistakes”. If u∗

i < 1, i.e, pg < 1, holds, then both u(C,D) and
u(D,C) are locally stable. Indeed, consider u(C,D).12 If a falls in region B, then it
is brought back to the neighborhood of u(C,D). Suppose next that a goes away from
u(C,D) by a sufficiently small ε > 0 into region C. Then it moves toward u∗ by at most
1+g−pg
1−pg ε until it hits the boundary of B and C, after which a reverts back toward u(C,D)

without entering region C. Thus, u(C,D), or to be precise, a stationary point nearby, is
locally stable. A symmetric argument can be made of u(D,C).

If, however, u∗
i > 1 holds for both i = 1, 2, the system shows a different behavioral

pattern. The only stable point becomes u∗. Thus, applying Theorem 6.5 to the present
game of the battle of the sexes, we obtain the following result where we define

K∗∗ = {u(C,D), u(D,C)}.

Theorem 7.1 For all ρ > 0, there exists ε > 0 such that d(hi, h) < ε implies

at →
{

Nρ(K∗∗), if pg < 1te
Nρ(u∗), if pg > 1

as t → ∞ with probability one. In particular, if p is sufficiently small, then at converges
to Nρ(K∗∗).

Proof. See Appendix D.

If u∗
i < 1 (i = 1, 2), there is another stationary point of the associated ODE, located in

the neighborhood of (u1(C,D), u2(D,C)) = (1, 1) as hi tends to h for i = 1, 2. However,
this point is not locally stable because if a fluctuates a little and falls in region, say, B,
the dynamics lead a to u(C,D). Therefore, the stochastic process does not converge to
the neighborhood of (1, 1) with any positive probability.
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Since we can analyze other 2× 2 games by following the same idea, let us simply state
the convergence result.

7.3 Game of chicken

Consider the following game of chicken:

( C D

C 1, 1 �, 1 + g
D 1 + g, � 0, 0

)
(7.15)

where g > 0, � > 0 and g + � < 1. We partition the set of feasible payoff vectors into the
following regions:

A = {(u1, u2) ∈ V |∃s ∈ S, (u1, u2) < u(s)},
B = {(u1, u2) ∈ V |� ≤ u1 < 1, u2 ≥ 1}.

Like before, Region B′ is the mirror image of B. Note that A ∪ B ∪ B′ = V , and the
intersection of any pair of these sets is empty.

�

�

u(C,C)

0

u2

u1

u(C,D)

u(D,C)

B

B′
A

Figure 4: Game of Chicken

Then, we can show that the aspiration vector converges to one of the efficient outcomes.
12A stationary point is located slightly away from u(C, D), because hi is an approximation of the step

function. Throughout this paper, we shall “ignore” this difference whenever the meaning is clear from the
context.
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Theorem 7.2 For ∀ρ > 0, there exists ε > 0 such that for ∀ε ∈ (0, ε), d(hi, h) < ε implies

at →
{

Nρ(u(C,C)), if 1 + pg > 2�
Nρ(K∗), if 1 + pg < 2�

as t → ∞ with probability one where

K∗ = {u(C,D), u(C,C), u(D,C)}.

If p is sufficiently small, then � = 1/2 becomes a threshold for the destination of the
dynamics. If � < 1/2 holds, then at converges to the neighborhood of u(C,C), while if
� > 1/2, then it converges to one of (the neighborhoods of) u(C,C), u(C,D), and u(D,C).

This conforms to our intuition. If � is small, then the off-diagonal payoffs are “unfair”
in the sense that the payoff to one of the players is closer to u(D,D) than to u(C,C).
Therefore, the player who is not “well treated” tends to be dissatisfied and moves back
and forth between C and D.

7.4 Prisoners’ dilemma

Finally, let us examine the prisoners’ dilemma game:

( C D

C 1, 1 −�, 1 + g
D 1 + g,−� 0, 0

)
(7.16)

where �, g > 0. We divide V into eight regions:

A = [0, 1) × [0, 1),
B = {a = (a1, a2) ∈ V |a1 < 0, 0 < a2 < 1},
C = {a = (a1, a2) ∈ V |a1 < 0, a2 ≥ 1},
D = {a = (a1, a2) ∈ V |0 ≤ a1 < 1, a2 ≥ 1},
E = {a = (a1, a2) ∈ V |a1 ≥ 1, a2 ≥ 1}

and the remaining three regions are the mirror image of B, C, D obtained by switching the
identity of the players, and are called B′, C′, D′, respectively. Among these eight regions,
E may be empty as depicted in Figure 5 if u(C,C) is located at the Pareto frontier of V .

If the aspiration level pair a is in region A, σA converges to (1, 0, 0, 0) as the sigmoid
function h converges to the step function. Therefore, a moves toward u(C,C).

If a is in region B, the unperturbed transition matrix PB is given by

PB =




1 0 0 0
0 p 0 1 − p
0 0 p 1 − p
0 1 − p 0 p



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Figure 5: g < 1, � < 1

and any convex combination of (1, 0, 0, 0) and (0, .5, 0, .5) is an invariant distribution of
PB. Thus, σ∗

a · u is a convex combination of u(C,C) = (1, 1) and .5u(C,D) + .5u(D,D) =
(−�/2, (1 + g)/2). For any invariant distribution, the aspiration level pair will eventually
enter region A.13

In region C, the unperturbed transition matrix P C is

P C =




p 1 − p 0 0
0 p 0 1 − p
0 0 p 1 − p
0 1 − p 1 − p p




whose unique invariant distribution is (0, 0, .5, .5). Once the aspiration vector enters C,
it moves toward .5u(D,C) + .5u(D,D) = ((1 + g)/2,−�/2). Therefore, the system either
reaches the boundary of C and D or enters A in a finite period of time.

Our main interest is whether or not we can sustain the cooperation outcome in the
limit. As it turns out, the answer depends upon the size of g > 0, which measures the
gain from defection against cooperation, or can be interpreted as the temptation for double
crossing. It affects the dynamics in quadrant D (and D′ by symmetry). In D, the transition

13Remember that PB is an approximation of P (a) for ∀a ∈ B, and P (a) has a unique invariant distri-
bution. Because of the multiplicity of invariant distributions of PB, the invariant distribution of P (a) is
sensitive to the choice of (h1, h2). The analysis shows, however, that the asymptotic property of at is not
sensitive to the choice of (h1, h2) since the aspiration level pair enters region A no matter which direction
it might move as discussed in the main text.
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matrix PD is given by

PD =




p 1 − p 0 0
0 p 0 1 − p
0 0 p 1 − p

(1 − p)2 p(1 − p) p(1 − p) p2


 .

Therefore, the invariant distribution σD is given by

σD =
1
3
(1 − p, 1, p, 1).

Similarly, we let σD′ be given by

σD′ =
1
3
(1 − p, p, 1, 1).

Using this, we define:

ũ = σDu

=
1
3

[(1 − p)u(C,C) + u(C,D) + pu(D,C) + u(D,D)]

=
(

1
3
(1 − � + pg),

1
3
(2 + g − p − p�)

)

and similarly,

ũ′ =
(

1
3
(2 + g − p − p�),

1
3
(1 − � + pg)

)
.

As g increases, both ũ = (ũ1, ũ2) and ũ′ = (ũ′
1, ũ

′
2) are moving away from the main diagonal

of V . It is useful to note that
ũ2 > 1 = u2(C,C)

and
ũ′

1 > 1 = u1(C,C)

if and only if
g > 1 + p(1 + �).

For a large � (the loss from being double-crossed), ũ and ũ′ might fail to be individually
rational. In this case, we need to do additional work.

Suppose that ũ1 < 0. Define

u =
1
2

(u(D,D) + u(D,C)) =
(

1 + g

2
,− �

2

)

as the middle point of u(D,D) and u(D,C). Let u∗ = (0, u∗
2) be a point such that the

vertical axis
{(u1, u2)|u1 = 0}
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ũ′

Figure 6: Prisoners’ dilemma: g > 1, � < 1

and the line segment connecting ũ and u intersect. Similarly, let u∗′ = (u∗
1
′, 0) be a point

at which the horizontal axis and the line segment connecting ũ′ and

u′ =
1
2

(u(D,D) + u(C,D)) =
(
− �

2
,
1 + g

2

)

intersect. Note that u∗ is the mirror image of u∗′ around the main diagonal of V .
Summarizing the above analysis, we obtain the following result.

Theorem 7.3 [1] Suppose g ∈ (0, 1) and � ∈ (0, 1). Then for all ρ > 0, there exists ε > 0
such that d(hi,1x≥0) < ε (i = 1, 2) implies

at → Nρ(u(C,C))

with probability one.

[2] Suppose g > 1 and � ∈ (0, 1). Then for all ρ > 0, there exists ε > 0 such that
d(hi,1x≥0) < ε (i = 1, 2) implies

at → Nρ({ũ, ũ′})

with probability one.
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[3] Suppose g > 1 and � > 1.

[3.1] If g2 +1 > �2 +�, then for all ρ > 0, there exists ε > 0 such that d(hi,1x≥0) < ε
(i = 1, 2) implies

at → Nρ

({
(0, u∗

2), (u
∗′
10)

})
with probability one.

[3.2] If g2 + 1 ≤ �2 + �, then only (0, 1) and (1, 0) are locally stable points.

Proof. See Appendix E.

This theorem says that for a sufficiently small p, which is implied by d(hi,1x≥0) < ε,
the cooperation outcome can be sustained if the gain from double crossing is modest, i.e.,
g < 1 holds. If one player deviates from the cooperation outcome, the other party, who
is double crossed, receives the worst possible payoff in the one shot game. Consequently,
the party who is double crossed immediately responds to such a deviation by playing D
as well. The resulting outcome is one shot Nash equilibrium, which is Pareto dominated
by the cooperation outcome. Dissatisfied with the bad outcome, both players switch to
cooperation simultaneously. But, the cooperation cannot last too long. As a result, the
limit outcome is a convex combination of (C,C), (D,D) and (D,C) (or (C,D)). Therefore,
the initial defector’s aspiration level is drawn toward (2+g)/3. Thus, if g < 1, such a
deviation pushes the defector’s aspiration level below the cooperation payoff of one. This
force drives the aspiration level toward region A, and therefore, toward u(C,C).

It is straightforward, albeit tedious, to check that u∗
2 < 1 and u∗′

1 < 1 if and only
if � + �2 > g2 + 1. In this case, the loss from being cheated is so large that the convex
combination of u(D,D), u(C,C) and u(D,C), for example, might induce the average
payoff for player 2 to go below his security level payoff u(D,D). The theorem says that
each player can secure his payoff. Consequently, the long run individual payoff of one
player becomes precisely his security level payoff. In this case, which is covered by the
last part of Appendix E, the analysis of Posch, Pichler, and Sigmund (1999) indicates the
possible existence of a stable limit cycle. In all other cases, the set of all locally stable
points is the global attractor: for any initial condition, the aspiration vector converges to
its neighborhood with probability one in a finite period of time. Although (0, 1) and (1, 0)
are locally stable points, we have not been able to check whether or not {(0, 1), (1, 0)} are
global attractors of the learning dynamics.

8 Aspiration as a weighted average of the two

We have assumed that the aspiration level is the average of one’s own payoff as in KMRV.
We can apply the same analytic tool to study the models in which the aspiration level
is formed in a different manner such as the one that uses the payoff of the other player
(Oechssler (2001)) or the average payoff of the players (Posch (2001)). Instead of repro-
ducing Oechssler (2001) and Posch (2001), we shall modify the aspiration formation rule
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to incorporate the payoff of the other player to illustrate how our analysis can be applied
to other models.

Suppose that the aspiration level of each player is calculated as

ai,t = ai,t−1 + γt [(1 − λ)ui(st) + λuj(st) − ai,t−1] (8.17)

where j �= i, and λ ∈ [0, 1/2] is the weight player i puts on the other player’s payoff in
updating his own aspiration level. Let V λ be the set of all aspiration vectors in the long
run:

V λ =
{
((1 − λ)a1 + λa2, λa1 + (1 − λ)a2) ∈ R

2| (a1, a2) ∈ V
}

.

Notice that V λ shrinks to a segment of the 45 degree line as λ approaches 1/2.
As V λ changes in λ, the dynamics change accordingly. But, any change in the stochas-

tic process incurred by λ > 0 is captured by the change of the associated ODE. Thus,
we can examine the asymptotic properties of the evolution of aspirations through the as-
sociated ODE. First, given an aspiration pair a, use the same transition matrix P (a) as
before to calculate the invariant distribution σ∗

a by solving σ∗
a = σ∗

aP (a). Next, calculate
aλ

i (i = 1, 2) as
aλ

i = (1 − λ)σ∗
aui + λσ∗

auj .

The mean dynamics at a move the aspiration pair in the direction of aλ = (aλ
1 , aλ

2 ).
We shall examine three repeated games: coordination, the battle of the sexes and the

prisoners’ dilemma. The analysis of the game of chicken is left for interested readers.

8.1 Coordination games

The analysis is virtually identical to that in Subsection 7.1. The aspiration levels aλ

converge to u(C,C), which is the only stable outcome of the associated ODE.

8.2 Battle of the sexes

See Figure 7. Note that V λ, which is the solid triangle in Figure 7, is a subset of V , which
is the dotted triangle. Also, note that V λ converges to the 45 degree line through the
origin as λ → 1/2. Given λ ∈ (0, 1/2), mark each area of V λ as A, B, B′ and C as we did
in Figure 1.

The mean dynamics over V λ are fairly easy to analyze. For example, on C, the gradient
vector induced by the associated ODE is pointing toward u∗. Thus, if u∗ is in C, then u∗ is
the only stable point of the associated ODE, and therefore, the aspiration vector converges
to u∗. Otherwise, we follow precisely the same logic as in Subsection 7.2 in order to show
that {ũ∗, ũ∗∗} is the set of stable points.

8.3 Prisoners’ dilemma

By following the same analysis as in Subsection 7.4, we calculate the threshold of g, beyond
which cooperation u(C,C) is not achieved. The key payoff profile ũ is now modified so
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that we have to pay attention to

ũλ = (1 − λ)ũ + λũ′.

If this point is in region D in Figure 5, then ũλ is a stable point of the system, and so is
its mirror image. If ũλ is in region A, then u(C,C) is the unique stable point. In other
words, for a sufficiently small p, u(C,C) is the unique stable point if and only if

g < 1 + λ(1 + g + �)

holds. Note that the second term on the right hand side is increasing in λ. As λ increases,
the threshold for g to sustain cooperation also increases. If λ = 1/2, the aspiration level
is essentially the population average as in Oechssler (2001).

9 Conclusion

We studied the behavior of boundedly rational agents who play an infinitely repeated
symmetric 2 × 2 game according to a simple rule of thumb: each agent continues to play
the same action if and only if the action generates one period payoff that exceeds the
aspiration level that summarizes the past history according to the average of the past
payoff. Using the method of stochastic approximation, we set forth a general approach
to this problem and characterized the set of limit points of the learning dynamics for all
symmetric 2 × 2 games.
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A couple of remarks are in order. One may wonder if a player who follows this rule
is taken advantage of by a rational player. The answer depends on the specific games.
In games with multiple individually rational Pareto efficient pure strategy payoffs such as
the battle of the sexes, if a rational player knows that the other player is following the
above behavior rule, then the rational player can select the equilibrium that favors him.
On the other hand, the rational player cannot take advantage of the other in prisoners’
dilemma. This is because any defection that leads to the lowest possible payoff for the
deceived player prompts him to switch to defection in the next period.

The method of stochastic approximation is applicable, at least in principle, to the class
of games with more than two pure strategies. In such a case, we have to specify which
action to take when the players switch actions. We may also face a problem of complexity
since there will generally be more regions that we have to investigate to characterize the
dynamics.

We have not analyzed what would happen if players were randomly matched to play
these games. Again, although our approach is applicable in principle to such a situation,
we leave it for the future study.
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A Proof of Lemma 6.1

Because the complete proof is available in Kushner and Yin (1997) (Theorem 4.2, p.243), we only sketch
the proof.

As the first step, choose an arbitrary small τ > 0. Consider (6.7) as K → ∞. By invoking the
martingale inequality, one can show that

m(tK+τ)−1∑
t=K+1

γtδMt → 0

holds for all states except on a null net N . Over N c, {aK(τ ′)}∞K=1 is equicontinuous for ∀τ ′ ∈ [0, τ ]. By
Arzela-Ascoli’s lemma, there exists a convergent subsequence. After renumbering the subsequence, let

aK(τ ′) → a(τ ′) ∀τ ′ ∈ [0, τ )

uniformly. Since the first term in (6.7) is approximated by the Riemann integration, we have

aK(τ ) − aK(0) −
∫ τ

0

[
σ∗

a(0)u − a(τ ′)
]
dτ ′ − τO(τ ) → 0

with probability one. This is true for every convergent subsequence. Since the space is compact, this
implies that the sequence itself is convergent, and its limit is

∫ τ

0

[
σ∗

a(0)u − a(τ ′)
]
dτ ′ + τO(τ ). Note that

if τ > 0 is sufficiently small, then the trajectory of (7.11) is a good approximation of the sample paths of
the stochastic process.

Next, fix an arbitrary τ > 0 and a small µ > 0. Consider a partition of [0, τ ) into {[τ0, τ1), [τ1, τ2), . . . , [τH−1, τH)}
for some H where

0 = τ0 < τ1 < · · · < τh < · · · < τH = τ

and
max

h=1,...,H
{τh − τh−1} < µ.

Over each time interval [τh−1, τh), define

ah(τ ′) = ah(τh−1) +

∫ τ ′−τh−1

0

σ∗
ah(τh−1)u − ah(τ ′′)dτ ′′ ∀τ ′ ∈ [τh−1, τh),∀h ∈ {1, . . . , H}

with ah(0) = aK(0) for ∀K ≥ 1. Let us consider the (deterministic) trajectory ah(τ ′) for ∀τ ′ ∈ [0, τ ),
which is essentially the trajectory obtained by “gluing” pieces of the trajectory of the associated ODE
over a small time interval. Over the time interval of size µ, the approximation error is bounded by µO(µ).
Because the number of intervals in [0, τ ) with length µ increases linearly as µ decreases,

lim
K→∞

aK(τ ′) − ah(τ ′) = O(µ) ∀τ ′ ∈ [0, τ ).

Letting µ → 0, we obtain the conclusion.

B Proof of Theorem 6.5

In order to prove Theorem 6.5, we verify that our stochastic process satisfies the conditions that appear
in Dupuis and Kushner (1989). They are fairly standard, and easy to verify in most application. The
numbers in the brackets are the original numbers for the corresponding assumptions in Dupuis and Kushner
(1989).14 We simplify the original version of the theorem by omitting the conditions that are needed only
for unbounded problems.

14See also Benäim and Weibull (2001).
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A1 [2.3]

∀∆ > 0,
∞∑

t=1

e−∆/γt < ∞, and
T∑

t=1

γt → ∞ as T → ∞;

A2 [5.1]

lim
tK−tL→0;K,L→∞

γK

γL
= 1.

The first condition says that γt decreases to 0, but at a proper rate that is roughly slower than 1/t
but faster than 1/ ln t. This condition holds for virtually all forms of adaptive learning algorithms with
decreasing γt which appear in the literature (there is no exception that we know of).

The second condition requires that γt should not change drastically. This is a technical condition
which is satisfied as long as γt changes “smoothly” over time.

Under these conditions, Dupuis and Kushner (1989) proved the following convergence theorem, which
is stated in the context of the present model without proof, because it is straightforward to check all the
conditions as we have already laid out above.

Theorem B.1 (Dupuis and Kushner (1989)) Suppose that the stochastic process satisfies [A1] and [A2].
Suppose also that K is the set of stable solutions of (6.9) with domain of attraction D. If there exists a
compact subset D∗ in the interior of D such that

K ⊂ D∗

and
at ∈ D∗

infinitely many times with probability one, then for all ρ > 0,

at → Nρ(K)

with probability one.

In our case, the mean dynamics converge to K starting from any initial condition in R
2. Moreover, for

any ρ > 0, there exists T > 0 such that for ∀t ≥ T , at ∈ Nρ(V ) where V is the set of all feasible payoff
vectors defined in (7.10). Thus, at visits the domain of the attraction of the mean dynamics infinitely
many times. The conclusion follows.

C Algorithm with constant γ

Although the above theorem is stated with respect to {γt} satisfying [A1], we can apply the same logic to
the constant gain algorithm in which at evolves according to

ai,t = ai,t−1 + γ (ui(st) − ai,t−1) (C.18)

for some constant γ > 0 instead of (2.1). In this case, the convergence with probability one does not hold.
Instead, we have to use a weaker metric. This version is useful for comparing our model to KMRV.

Theorem C.1 (Dupuis and Kushner (1989)) Suppose that K is the set of stable solutions of (6.9) with
domain of attraction D. If there exists a compact subset D∗ in the interior of D such that

K ⊂ D∗

and
at ∈ D∗

infinitely many times with probability one, then for ∀ρ > 0 and ∀T > 0,

lim
γ→0

Pr

(
sup

0≤τ≤T
d(a(τ ),K) > ρ

)
= 0

where a(τ ) is the continuous time process obtained by linearly interpolating at and d(·, ·) is the Hausdorff
metric.
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D Proof of Theorem 7.1

For the sake of simplicity of expression, we prove the theorem only for the case of symmetric perturbation,
i.e., h1(x) = h2(x) = h(x) for all x. Also, we parameterize h by ε to write hε though we often suppress the
superscript. We assume, again for the sake of simplicity, that:

(i) given ε > 0, hε(x) = 1 if x ≥ ε and hε(x) = 0 if x ≤ −ε, and that;

(ii) there exists δ > 0 such that given ε > 0, hε(x) ∈ (δ, 1 − δ) holds if x ∈ (−ε + ε2, ε − ε2).

When we let d(h,1x≥0) converge to zero, we simply write “ε goes to zero.” In the following, we presuppose,
without rigorous discussion, that ε is sufficiently small. In the following, given ε > 0 and a ∈ R

2, we let
Nε(a) = [a − ε, a + ε] × [a − ε, a + ε].

Lemma D.1 Suppose pg < 1. Then for all ε > 0, there exists a symmetric steady state in Nε((1, 1)).
This steady state is a saddle point.

Proof. Assume pg < 1. In the ε-neighborhood of (1, 1), we have

P (a) =




p2 p(1 − p) p(1 − p) (1 − p)2

0 h1 0 1 − h1

0 0 h2 1 − h2

(1 − p)2 p(1 − p) p(1 − p) p2


 . (D.19)

We look for a symmetric equilibrium in this neighborhood. First, solving σa = σaP (a), we obtain

σa =
1

Σ
(
(1 − h1)(1 − h2)

2p
, 1 − h2, 1 − h1,

(1 + p)(1− h1)(1 − h2)

2p(1 − p)
) (D.20)

where

Σ =
(1 − h1)(1 − h2)

p(1 − p)
+ 2 − h1 − h2,

and we abbreviate h(1−ai) as hi for i = 1, 2. Repeating a similar exercise to the one we do for the prisoners’
dilemma, we obtain a symmetric steady state (a∗, a∗) on the line segment connecting (1 − ε, 1 − ε) and
(1 + ε, 1 + ε).

It must be the case that as ε goes to zero, σa∗ · u converges to (1, 1). Therefore, we have

lim
ε→0

h(1 − a∗(ε)) = 1 − gp(1− p).

This implies that h(1−a∗(ε)) is bounded away from 0 and 1 in the limit, and therefore, h′(1−a∗(ε)) tends
to infinity as ε goes to zero. Therefore, we obtain

lim
ε→0

h′(1 − a∗(ε))
Σ

= 1. (D.21)

After tedious calculation, we obtain

∂σa

∂a1
· u1 = −h′(1 − a∗)

Σ

[(
1 +

1 − h2

p(1 − p)

)
σ · u1 − (1 + g)

]

and
∂σa

∂a1
· u2 = −h′(1 − a∗)

Σ

[(
1 +

1 − h2

p(1 − p)

)
σ · u2 − 1

]
.

(∂σa/∂a2) · u1 and (∂σa/∂a2) · u2 are obtained in the same manner. In the limit, as ε goes to zero, since
h′(1 − a∗(ε)) tends to infinity, we have(

Σ

h′(1 − a∗(ε))

)2

(J11J22 − J12J21) → −g2 < 0, as ε → 0.

Thus, a∗ is a saddle point.
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E Proof of Theorem 7.3

Again we consider a symmetric perturbation only, i.e., h1(·) = h2(·) = h(·).

E.1 Lemmata

Lemma E.1 For all ε > 0, d(h,1x≥0) < ε implies that there exists a steady state in Nε(u(C, C)), and
that every steady state in Nε(u(C, C)) is locally stable if g < 1, and is a saddle point if g > 1.

Proof. Take ε > 0 as given. Consider the ε-neighborhood of u(C, C) = (1, 1). In this neighborhood, we
have

P (a) =




h1h2 h1(1 − h2) (1 − h1)h2 (1 − h1)(1 − h2)
0 0 0 1
0 0 0 1
1 0 0 0


 (E.22)

where we abbreviate h(1 − ai) as hi (i = 1, 2). Solving σa = σaP (a), we obtain

σa =
1

Σ
(1, h1(1 − h2), h2(1 − h1), 1 − h1h2) (E.23)

where
Σ = 2 + h1 + h2 − 3h1h2.

This will give us the mean dynamics in this neighborhood:

ȧ = Ψ(a) = σa · u − a.

Ψ(a) = 0 gives us a steady state, which exists in Nε(u(C, C)). We look for a steady state a∗ with
a∗
1 = a∗

2. Observe first that due to symmetry, a1 = a2 implies ȧ1 = ȧ2. If a = (1−ε, 1−ε), then h1 = h2 = 1
in (E.23), i.e., σa = (1, 0, 0, 0). This implies ȧ1 = ȧ2 = ε > 0. On the other hand, consider a = (1, 1) if
3 − g + � > 0 and let a = (1 + ε, 1 + ε). Then ȧ1 = ȧ2 < 0. Since σa · u − a is continuous in a, there exists
a∗
1 = a∗

2 ∈ (1 − ε, 1) at which ȧ1 = ȧ2 = 0.
Next, for each ε > 0, select a steady state a∗(ε) ∈ Nε((1, 1)).15 Denote hi(1−a∗

i (ε)) by h∗
i (ε) (i = 1, 2).

In the limit, as ε goes to zero, a∗(ε) converges to (1, 1). Therefore, it must be the case that h∗
i (ε) (i = 1, 2)

converges to 1 as well. Since σa∗(ε) · ui = a∗
i (ε) holds for any ε > 0, we have

lim
ε→0

[
dσa∗(ε)/dε

] · ui

da∗
i (ε)/dε

= 1, i = 1, 2,

or

−∂σa

∂h1
· u1h

′(1 − a∗
1) − ∂σa

∂h2
· u1h

′(1 − a∗
2)

da∗
2

da∗
1

= 1, (E.24)

−∂σa

∂h1
· u2h

′(1 − a∗
1) − ∂σa

∂h2
· u2h

′(1 − a∗
2)

da∗
2

da∗
1

= 1 (E.25)

in the limit as ε goes to zero. Due to the assumptions we impose upon h(·), a∗
i (ε) ∈ (1 − ε, 1 − ε + ε2).

This implies that h′(1− a∗
1(·)) = h′(1− a∗

2(·)) and da∗
1/da∗

2 = 1 in the limit as ε goes to zero. Substituting
these equations into (E.24) and (E.25), and solving for h′(1 − a∗

i ), we obtain

[3 − g + �] lim
ε→0

h′(1 − a∗
i (ε))

Σ
= 1, i = 1, 2 (E.26)

where we make use of σa∗ · u = (1, 1) and h∗ = 1 in the limit as well.

15If there is more than one such equilibrium, we simply choose one of them: a∗(ε) does not have to be
the one we found in the last paragraph.
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We now examine the stability of a∗. Take the Jacobian of Ψ at a∗:

J =

[
J11 J12

J21 J22

]
=

[
[∂σa∗/∂a1] · u1 − 1 [∂σa∗/∂a2] · u1

[∂σa∗/∂a1] · u2 [∂σa∗/∂a2] · u2 − 1

]
. (E.27)

Differentiating σa with respect to a1 (or a2), and evaluating at a = a∗, we have

∂σa∗/∂a1 = ∂σa∗/∂a2 = [(1 − 3h∗)σa∗ − (0, 1 − h∗,−h∗,−h∗)]
h′(1 − a∗)

Σ
,

and therefore,

[∂σa∗/∂a1] · u1 = [∂σa∗/∂a2] · u2 = [(1 − 3h∗)a∗
i + (� + (1 + g − �)h∗)]

h′(1 − a∗)
Σ

and

[∂σa∗/∂a1] · u2 = [∂σa∗/∂a2] · u1 = [(1 − 3h∗)a∗
i − (1 + g − (1 + g − �)h∗)]

h′(1 − a∗
i )

Σ
where we suppress ε.

Note that h′(1− a∗
i ) > 0. It is immediately verified that J11 + J22 < 0. Therefore, the stability of the

system depends on the sign of J11J22 − J12J21. Since J11 = J22 < 0 and J12 = J21 < 0 hold, its sign is
equivalent to that of

−J11 + J12 = −(1 + g + �)
h′(1 − a∗

i (ε))

Σ
+ 1 + o(ε).

Substituting (E.26) into the above expression, we obtain

2
h′(1 − a∗

i (ε))

Σ
(1 − g) + o(ε)

where

lim
ε→0

o(ε)

ε
= 0.

Since h′(1 − a∗
i (ε))/Σ is positive, the sign of J11J22 − J12J21 coincides with that of 1 − g in the limit as ε

goes to zero. Hence, a∗ is a locally stable state if g < 1, and a saddle point if g > 1. Q.E.D.

The next lemma shows that there is no steady state in the strip around the boundary of A and D
except around (1, 1) and possibly (0, 1).

Lemma E.2 (i) Suppose g < 1. For all ρ > 0, there exists ε > 0 such that no steady state exists in
[ε, 1 − ρ] × [1 − ε, 1 + ε].

(ii) Suppose g > 1. For a sufficiently small ε > 0, no steady state exists in [ε, 1 − ε] × [1 − ε, 1 + ε].

Proof. In this region, we have

P (a) =




h2 1 − h2 0 0
0 0 0 1
0 0 0 1
1 0 0 0


 (E.28)

where we abbreviate h(1 − ai) as hi (i = 1, 2). Solving σa = σaP (a), we obtain

σa =
1

Σ
(1, 1 − h2, 0, 1 − h2) (E.29)

where
Σ = 1 + 2(1 − h2).

Therefore, we have

σa · u1 =
1 − �(1 − h2)

1 + 2(1 − h2)
, (E.30)

σa · u2 =
1 + (1 + g)(1 − h2)

1 + 2(1 − h2)
. (E.31)
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In a steady state, it must be the case that

1 − ε ≤ 1 + (1 + g)(1 − h2)

1 + 2(1 − h2)
≤ 1 + ε

holds. If g �= 1 holds, then h2 has to go to 1 as ε tends to zero. This implies that

σa · u1 =
1 − �(1 − h2)

1 + 2(1 − h2)
→ 1

as ε → 0. This proves the result for the case of g < 1.
Also, our assumption that h(·) and h2 are close to one implies that

σa · u2 = a2 = 1 − ε + o(ε) < 1

in a steady state. However, if g > 1, then σa · u2 > 1 holds by (E.31). This is a contradiction. Thus, there
is no steady state in [ε, 1 − ε] × [1 − ε, 1 + ε]. Q.E.D.

Lemma E.3 Suppose g < 1. For all ρ > 0, there exists ε > 0 such that no steady state exists outside
Nρ((1, 1)).

Proof. In the ε-boundary between C and D, [−ε, ε] × [1 − ε,∞) ∩ V , we have

P (a) =




h2 1 − h2 0 0
0 0 0 1
0 0 0 1

1 − h1 0 h1 0


 . (E.32)

Solving σa = σaP (a), we obtain

σa =
1

Σ
(1 − h1, (1 − h1)(1 − h2), h1(1 − h2), 1 − h2) (E.33)

where
Σ = 3 − h1 − 2h2. (E.34)

Thus, g < 1 implies

σa · u2 =
1

Σ
[1 − h1 + (1 + g)(1− h1)(1 − h2) − �h1(1 − h2)] < 1. (E.35)

Hence, Ψ(·) < 0 holds for a sufficiently small ε > 0. Q.E.D.

Lemma E.4 Suppose g < 1. For all ρ > 0, there exists ε > 0 such that no closed orbit goes out of
Nρ((1, 1)).

Proof. Consider the region with a2 > a1. The opposite case is treated in a symmetric manner. Take an
arbitrary ρ > 0 that is not too large. By Lemma E.1, we can find ε > 0 such that every steady state is
contained in Nρ/3((1, 1)). Take ε > 0 sufficiently small so that

Mε < ρ/3

holds where M > 2+�
1−g

.
From Poincaré’s index theory, if there exists a limit cycle, it must contain at least one steady state

other than saddle points. Therefore, every limit cycle passes through Nρ/2((1, 1)). In A outside the ε-
boundary, the process moves upward (toward (1, 1)), while in D outside the ε-boundary, the process moves
downward (toward ũ). Therefore, if the cycle leaves Nρ/2((1, 1)), it must pass through the ε-strip between
the two regions.
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Take a = (a1, a2) with a1 ∈ [1 − ρ, 1 − ρ/3] and a2 ∈ [1 − ε, 1 + ε]. Then we have

Ψ2(a) ≤ ε − (1 − g)(1 − h2)

1 + 2(1 − h2)
,

and

Ψ1(a) ≥ Mε − (2 + �)(1 − h2)

1 + 2(1 − h2)
.

Therefore, by the choice of M , Ψ1(a) > 0 whenever Ψ2(a) ≥ 0. If both Ψ1(a) and Ψ2(a) are negative, then

Ψ2(a)

Ψ1(a)
≥ 1

M
.

Thus, a1 can be away from 1 by at most 2Mε + ρ/3 < ρ. Hence, the orbit never goes out of Nρ((1, 1)).
Q.E.D.

E.2 g > 1 and � > 1

Lemma E.5 Suppose g > 1 and � > 1.

(i) Suppose �2 − g2 < −� + 1. Then, in the limit as ε goes to zero, the only steady states are (0, u∗
2) and

(u∗
1 , 0).

(ii) Suppose �2 − g2 > −� + 1. Then, in the limit as ε goes to zero, the only steady states are (0, 1) and
(1, 0).

All of these steady states in (i) and (ii) are locally stable.

Proof. Let us prove first that if there is a stationary point in this case, it must be locally stable. The
existence of a stationary point in this case is a little involved, and will be proved shortly after we establish
the stability property.

From the proof of Lemma E.3, the transition matrix in the ε-boundary between C and D, [−ε, ε]× [1−
ε,∞) ∩ V is given by (E.32). From (E.33) with (E.34), we obtain

σa · u1 =
1

Σ
[1 − h1 − �(1 − h1)(1 − h2) + (1 + g)h1(1 − h2)] (E.36)

and

σa · u2 =
1

Σ
[1 − h1 + (1 + g)(1− h1)(1 − h2) − �h1(1 − h2)] . (E.37)

If (0, 1) is a steady state in the limit, then it must be the case that

h1 =
g − 1

1 + g + �

and

h2 = 1 − 2 + �

(� − g + 1)(1 + g + �)
.

Therefore, (0, 1) is a steady state in the limit of ε → 0 if �2−g2 > −�+1 holds, and it is not if �2−g2 < −�+1
holds. We divide the proof into two cases.
Case (i) �2 − g2 < −� + 1: In the region [−ε, ε] × [1 + ε,∞) ∩ V , which is the ε-boundary except around
(0, 1), we have h2 = 0 in (E.32). Thus, σa · u1 = 0 in the limit implies

h1 =
g − 1

g + �

at the steady state. Using this, we obtain

u∗
2 = σa · u2 = 1 +

g2 − �2 − � + 1

3g + 2� + 1
,
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which is greater than 1 due to the condition �2 − g2 < −� + 1.
Note that the condition �2 − g2 < −� + 1 implies that h(·) at the steady state is bounded away from

0 and 1 in the limit, and therefore, h′(·) tends to infinity as ε goes to zero. Therefore, we obtain

J11
Σ

h′ → −(� − 1) < 0, as ε → 0,

J22 = −1 < 0,

J12 = 0,

J21
Σ

h′ → 2 + g + � > 0, as ε → 0.

Thus, J11 + J22 < 0 and J11J22 − J12J21 > 0, and therefore, (0, u∗
2) is stable. By a symmetric argument,

(u∗
1, 0) is stable, too.

Case (ii) �2 − g2 > −�+1: Note that the condition �2 − g2 > −�+1 implies that h(·) at the steady state is
bounded away from 0 and 1 in the limit, and therefore, h′(·) tends to infinity as ε goes to zero. Therefore,
we obtain

J11
Σ

h′ → − 1 + g

� − g + 1
< 0,

J22
Σ

h′ → 0,

J12
Σ

h′ → −(� − g + 1) < 0,

J21
Σ

h′ → 2 + �

� − g + 1
> 0,

as ε goes to zero. Thus, J11 + J22 < 0 and J11J22 − J12J21 > 0, and therefore, (0, 1) is stable. By a
symmetric argument, (1, 0) is stable, too.

E.3 Proof of the theorem

If g < 1, then the ODE vanishes at a single point in the neighborhood of (1, 1), which we demonstrated
is locally stable. The phase diagram of the ODE reveals that starting from any initial condition, the
trajectory of the ODE must converge to the stationary point. That is, the locally stable point of the ODE
is the globally stable point. By applying Theorem 6.5, we conclude that if g < 1, then at converges to the
small neighborhood of (1, 1) with probability one. This proves the first part of the theorem.

If g > 1, then the stationary solution of the ODE in the neighborhood of (1, 1) is a saddle point. We
have to show that the aspiration vector converges to either one of the locally stable points in the limit,
which are {ũ, ũ′} if g > 1 and � < 1, and K∗ if g > 1 and � > 1. From the previous analysis, we know
that the ODE vanishes precisely at three points: two locally stable points and one saddle point in the
neighborhood of (1, 1).

To simplify the notation, let us regard (1, 1) as the saddle point, and let S∗ = {s∗1, s∗2, (1, 1)} be the three
points where the ODE vanishes. If g > 1 and � > 1, then s∗1 = (0, max [u∗

2, 1]), and s∗2 = (max
[
u∗′

1, 1
]
, 0),

and if g > 1 and � < 1, then s∗1 = ũ and s∗2 = ũ′.
Suppose that g > 1 and � < 1. Then, s∗1 = ũ and s∗2 = ũ′. It is straightforward to verify that starting

from any initial condition, the trajectory of the ODE must converge to the neighborhood of {s∗1, s∗2}. Then,
Theorem 6.5 implies that at → {s∗1, s∗2} with probability one. If g > 1 and � > 1, but s∗1 = (0, u∗

2) and
s∗2 = (u∗′

1, 0), then we can invoke exactly the same logic to prove that at → {s∗1, s∗2} with probability one.
We now prove the theorem for the case where g > 1 and � > 1 so that s∗1 = (0, 1) and s∗2 = (1, 0):

�2 − g2 > −� + 1.

We shall focus on the stability property of s∗1, because the other case follows from the symmetric argument.
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Note that s∗1 is the corner of A, B, C and D. We can write the transition matrix as


1 − h2 h2 0 0
0 0 0 1
0 0 0 1
h1 0 1 − h1 0




where hi is continuous (i = 1, 2); h1(x) = 0 if x < −ε, h1(x) = 1 if x > ε, and h1 is strictly increasing over
[−ε, ε]; and h2(x) = 0 if x < 1 − ε, h2(x) = 1 if x > 1 + ε, and h2 is strictly increasing over [1 − ε, 1 + ε].
For example, in the area of D which is away from its boundary by more than ε, the transition matrix is


0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0




because h1 = h2 = 1. If h1 > 0 or h2 > 0, then the invariant distribution is

1

h1 + 2h2
(h1, h1h2, h2(1 − h1), h2) .

If h1 = 0 and h2 = 0 (which is the case in the “interior” of B), the invariant distributions are{(
λ, 0,

1 − λ

2
,
1 − λ

2

)
| λ ∈ [0, 1]

}
.

Note that this case does not arise if we assume that the value of the sigmoid function is contained in (0, 1).
But at the same time, the existence of multiple invariant distributions reveals that the sequence of the
unique invariant distributions induced by the sigmoid functions might be very sensitive to the choice of the
sigmoid function. Thus, we have to pay special attention to the case where h1 = h2 = 0, or equivalently,
{(a1, a2)|a1 ≤ −ε, a2 ≤ 1 − ε}.

If h1 + 2h2 > 0, then the ODE is

ȧ1 =
1

h1 + 2h2
(h1 − �h1h2 + (1 + g)h2(1 − h2)) − a1 (E.38)

ȧ2 =
1

h1 + 2h2
(h1 + (1 + g)h1h2 − �h2(1 − h2)) − a2. (E.39)

Clearly, at the stationary point s∗1, ȧ1 = ȧ2 = 0.
Our task is to extract information about

Ȧ1 = {(a1, a2)|ȧ1 = 0}
and

Ȧ2 = {(a1, a2)|ȧ2 = 0}.
Let us examine Ȧ1. Since h2 is an increasing function of a2,

∂ȧ1

∂a2
≤ 0 (E.40)

and if h′
2 > 0, then the strict inequality holds. Thus, if ȧ1 = 0 at (a1, a2), then for any (a1, a

′
2) �∈ Ȧ1,

ȧ1 < 0 if a′
2 > a2, and vice versa.

Consider the area where h2 = 1, which is the case if a2 ≥ 1 + ε. A simple calculation shows that

ȧ1 =
1 + g − (� + g)h1

h1 + 2
− a1 = 0

at Ȧ1. Since h1 is an increasing function of a1, this equation has a unique solution that satisfies the
equality, which implies that Ȧ1 is a vertical line if h2 = 1:

(a1, a2), (a
′
1, a

′
2) ∈ Ȧ1, a1 = a′

1 if a2, a
′
2 ≥ 1 + ε. (E.41)

39



Similarly, let us consider the area where h1 = 1, which covers the area where a1 ≥ ε. If h1 = 1, then

ȧ1 =
1 − �h2

1 + 2h2
− a1,

which is a strictly decreasing function of h2:

∂ȧ1

∂a2
< 0. (E.42)

In particular, if a1 = ε, then h2 = (1 − ε)/(� + 2ε), and if a1 = 1, then h2 = 0. Thus, Ȧ1 is located in a
narrow band of [ε, 1]× [1−ε, 1+ε]. Combining (E.40), (E.41) and (E.42), we conclude that Ȧ1 is contained
in a narrow band of

[−ε, ε] × [1 − ε,∞) ∪ [−ε,∞) × [1 − ε, 1 + ε].

Moreover, Ȧ1 is “decreasing”: if Ȧ1 is not a vertical line, then it has a negative slope.
Next, we examine Ȧ2. It is easy to verify that

∂ȧ2

∂a1
> 0. (E.43)

If h1 = 0 and h2 > 0, or equivalently, a1 < −ε and a2 > 1 + ε, then

ȧ2 = − �

2
− a2 < 0. (E.44)

If h1 > 0 and h2 = 0, then a1 > 1 − ε, a2 ≤ 1 − ε and

ȧ2 = 1 − a2 ≥ ε > 0. (E.45)

If h1 = 1 and 1 − ε < h2 ≤ 1 + ε, then a1 ≥ ε, 1 − ε < a2 ≤ 1 + ε and

ȧ2 =
(1 + g)h2 + 1

1 + 2h2
− a2.

It would be helpful to understand the structure of the sigmoid function h2 over [1 − ε, 1 + ε]. Because h2

has to change from 0 to 1 over a small interval, its derivative must be very large over almost all parts of
[1− ε, 1+ ε]. In particular, h′(0) ↑ ∞. Thus, if ∂ȧ2/∂a2 < 0 at a2 = 1− ε, then the derivative must become
positive before a2 becomes equal to 0. Thus, the minimum of ȧ2 over [1 − ε, 1 + ε] must be located at
a2 ∈ (1 − ε, 0). Since ∂ȧ2/∂a2 ≥ −1, the minimum of ȧ2 cannot be smaller than

1 + (1 + g)h2(1 − ε)

1 + 2h2(1 − ε)
− (1 − ε) = ε.

Thus, for a given g > 1, we can choose ε > 0 sufficiently small so that

1 + (1 + g)h2(1 + ε)

1 + 2h2(1 + ε)
− (1 + ε) =

2 + g

3
− (1 + ε) > 0.

Then, it follows that
ȧ2 > 0

if a1 ≥ ε and a2 ∈ [1 − ε, 1 + ε].
So far, we have shown that ȧ2 < 0 over

(−∞,−ε] × (1 − ε,∞) (E.46)

and that ȧ2 > 0 over
([−ε,∞) × (−∞, 1 − ε]) ∪ ([1 + ε,∞) × [1 − ε, 1 + ε]) . (E.47)

Since the gradient vector is a continuous function of the aspiration vector, Ȧ2 must be located outside of
(E.46) and (E.47). Combining this observation with (E.40), (E.41) and (E.42), we conclude that both Ȧ1

and Ȧ2 can exist only in
{(a1, a2) | − ε < a1 < ε, a2 > 1 − ε} . (E.48)
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Thus, if there is a locally stable point, then it must be located in (E.48).
For convenience, let us regard Figure 5 as a “map.” Note that Ȧ2 moves to the southwest region from

(E.48), while Ȧ1 moves to the southeast region from (E.48). Thus, to prove that there exists a locally
stable point, it suffices to show that over (E.48), Ȧ2 is located to the east side of Ȧ1.

We know that in Ȧ1, if a2 ≥ 1 + ε, then h2 = 1 and therefore,

h1 − �h1 + (1 + g)(1− h2)

h1 + 2
− a1 = 0.

Hence,

h1 =
1 + g − 2a1

� + g − a1
.

Substituting h1 and setting h2 = 1 into ȧ2 evaluated at (a1, a2) ∈ Ȧ1, we have

ȧ2 =
1

h1 + 2

[
(1 + g − 2a1)(2 + � + g − a2)

� + g − a1
− � − 2a2

]
.

Our task is to evaluate the sign of the term inside the brackets. Recall that we are investigating the
gradient vector along Ȧ1 in the area of a1 ∈ [−ε, ε] and a2 ≥ 1 + ε. Thus, a1 ≤ ε and a2 ≥ 1 + ε. Hence,

(1 + g − 2a1)(2 + � + g − a2)

� + g − a1
− � − 2a2 ≤ (1 + g − 2ε)(� + g + 1 − ε)

� + g − ε
− � − 2 − 2ε.

Note that if ε = 0, the right hand side of the inequality becomes

(1 + g)(� + g + 1)

� + g
− � − 2,

which is negative if and only if
g2 − �2 − � + 1 < 0,

which is precisely the case we are investigating. Thus, for a sufficiently small ε > 0,

ȧ2 < 0

for (a1, a2) ∈ Ȧ2 ∩{a2 ≥ 1+ ε}. By (E.43), over the area located in the left hand side of Ȧ2, ȧ2 < 0. Thus,
Ȧ1 is located in the left hand side of Ȧ2 if a1 ≥ 1 + ε.

Notice that a part of Ȧ2 is located in the area where ȧ1 < 0, while the rest is located in the area where
ȧ1 > 0 (i.e, a1 ≤ 1 − ε). Since the gradient changes continuously with respect to the aspiration vector,

Ȧ1 ∩ Ȧ2 �= ∅,
which proves that a stationary point exists.
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Benäim, M., and J. Weibull (2001): “Deterministic Approximation of Stochastic Evo-
lution in Games,” forthcoming in Econometrica.

Carmichael, H. L., and W. B. McLeod (1997): “Gift Giving and the Evolution of
Cooperation,” International Economic Review, 38(3), 485–509.

Dupuis, P., and H. J. Kushner (1989): “Stochastic Approximation and Large Devia-
tions: Upper Bounds and w.p.1 Convergence,” SIAM Journal of Control and Optimiza-
tion, 27, 1108–1135.

Evans, G. W., and S. Honkapohja (2001): “Expectations and the Stability Problem
for Optimal Monetary Policies,” University of Oregon.

Gilboa, I., and D. Schmeidler (1995): “Case-Based Decision Theory,” Quarterly Jour-
nal of Economics, 15, 1–26.

(2000): “Reaction to Price Changes and Aspiration Level Adjustments,” Tel
Aviv University.

(2001): A Theory of Case-Based Decisions. Cambridge University Press.

Karandikar, R., D. Mookherjee, D. Ray, and F. Vega-Redondo (1998): “Evolv-
ing Aspirations and Cooperation,” Journal of Economic Theory, 80(2), 292–331.

Kushner, H. J., and D. S. Clark (1978): Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-Verlag.

Kushner, H. J., and G. G. Yin (1997): Stochastic Approximation Algorithms and
Applications. Springer-Verlag.

Ljung, L. (1977): “Analysis of Recursive Stochastic Algorithms,” IEEE Transactions on
Automatic Control, pp. 551–575.

Marcet, A., and T. J. Sargent (1989): “Convergence of Least Squares Learning
Mechanisms in Self Referential Linear Stochastic Models,” Journal of Economic Theory,
48, 337–368.

42



Matsui, A. (2000): “Expected utility and case-based reasoning,” Mathematical Social
Sciences, 39, 1–12.

Napel, S. (2003): “Aspiration Adaptation in the Ultimatum Minigame,” forthcoming in
Games and Economic Behavior.

Oechssler, J. (2001): “Cooperation as a Result of Learning with Aspiration,” forthcom-
ing in Journal of Economic Behavior and Organization.

Posch, M. (2001): “Win Stay, Lose Shift or Imitation — Only the Choice of the Peers
Counts,” University of Vienna.

Posch, M., A. Pichler, and K. Sigmund (1999): “The Efficiency of Adapting Aspi-
ration Levels,” in Proceedings of Royal Society, vol. 266, pp. 1427–1435, London.

Rubinstein, A. (1986): “Finite Automata Play Repeated Prisoners Dilemma,” Journal
of Economic Theory, 39(1), 83–96.

Sandholm, W., and J. Hofbauer (2002): “On the Global Convergence of Stochastic
Fictitious Plays,” Econometrica, 70, 2265–2294.

Sarin, R., and F. Vahid (1999): “Payoff Assessment without Probabilities: A Simple
Dynamic Model of Choice,” Games and Economic Behavior, 28(2), 294–309.

Simon, H. (1987): Models of Man, Continuity in Administrative Science. Ancestral Books
in the Management of Organizations. Garland Publisher.

Thorndike, E. L. (1911): Animal Intelligence: Experimental Studies. MacMillan, New
York.

Vega-Redondo, F. (1997): “Evolution of Walrasian Behavior,” Econometrica, 65(2),
375–384.

Winter, S. G. (1971): “Satisficing, Selection and the Innovating Remnant,” Quarterly
Journal of Economics, 85(2), 237–261.

Woodford, M. D. (1990): “Learning to Believe in Sunspots,” Econometrica, 58, 277–
307.

43


