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Abstract

This paper presents an equivalence result between expected utility the-
ory (EU) and a modified version of case-based decision theory (CBDT). To
be precise, it shows that a model constructed in EU can be embedded in a
CBDT model, and vice versa. CBDT, proposed and axiomatized by Gilboa
and Schmeidler (1995), is related to case-based reasoning in psychology and
artificial intelligence and considered as a descriptive theory of human behavior.
In CBDT a decision maker remembers situations similar to the current problem
and uses them to help solve it. This idea stems from bounded rationality and
is similar in spirit to the satisficing theory of March and Simon (1958) in the
sense that the decision maker tends to satisfice rather than optimize.
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1 Introduction

Expected utility theory (henceforth, EU) has been a dominant tool in the analysis
of human behavior under uncertainty in economics and game theory (von Neumann
and Morgenstern(1947) and Savage (1954) for its axiomatization). While this theory
is a powerful analytical tool, some observations have been made to show that EU
sometimes fails to explain human behavior in the real world. Some pieces of evidence
suggest two tendencies of human behavior. The first is that people tend to look for
a better alternative as opposed to the best one. The second is that people often rely
on past cases in making decisions. These sets of evidence led to models of bounded
rationality. Among them, the best known among economists is the satisficing theory
of March and Simon (1958). This theory uses a conceptually different framework.
For example, in the satisficing theory, a decision maker is “satisficing” instead of

optimizing as in EU.

Recently, Gilboa and Schmeidler (1995) propose case-based decision theory (CBDT),
which is similar in spirit to the satisficing theory. According to CBDT, decisions
under uncertainty are made by analogies to previously-encountered problems. The
theory postulates a similarity function over decision problems. An action is evalu-
ated by a similarity-weighted sum of the utility the action yielded in the past cases.
CBDT is similar to the satisficing theory of March and Simon in the sense that
a decision maker in CBDT tends to be satisfied with the present choice once an

“aspiration level” is attained.

The relationship between EU and CBDT has been unclear, which leads to spec-
ulations and conjectures about their relationships and the validity of one theory
in light of the other. Indeed, it seems, at a first glance, that EU and CBDT are

not reconcilable. The only reconciliation takes effect when the identical situation is



repeated sufficiently many times in an independent manner. In this case, the fre-
quency of the outcomes converges to the true distribution. Using this fact, Gilboa
and Schmeidler (1996) show that an “ambitious” agent, whose aspiration level is ad-
justed over time, tends to optimize on condition that the same problem is repeated

sufficiently many times.!

The present paper modifies CBDT to show that a model of decision making
based on EU, or an EU model, can be embedded into a model based on CBDT, or
a CBDT model, and vice versa. Our embedding does not rely on any asymptotic
argument. Any pair of models constructed this way prescribe the same actions at

all decision nodes except the first one.?

Roughly speaking, the equivalence result takes advantage of the linear structures
of the two theories. In the embedding of EU models into CBDT models (resp.
CBDT models into EU models), a similarity value (resp. a conditional probability)
is given by a linear combination of conditional probabilities (resp. similarity values).
It turns out that there is a loose correspondence between conditional probabilities
and similarity values: the higher the correlation between two cases in terms of the

induced payoffs, the more similar the two cases are, and vice versa.

In addition to the translation between conditional belief systems and similarity
functions, embedding involves the construction of other ingredients. Only two of
them are mentioned here. First, in case of the embedding of CBDT into EU, con-
structing a state space is required. The present paper defines a state as a mapping
from the set of all possible combinations of problems, actions and histories into the

set of results. That is, if a state is known, one can tell what happens if a certain

! Gilboa and Schmeidler (1995) note that EU models can be embedded in CBDT models if a
decision maker includes hypothetical cases in his memory.

2 One cannot control the action in the first period in a CBDT model since there is no experience
at all. However, this does not pose a serious problem since, in the real problem, one can always
assume that there are some previous experiences.



action is taken given the past history and the present problem. The state space is

the set of all such mappings.

Second, in case of the embedding of EU into CBDT, the set of problems should
be specified. The present paper identifies a problem with a personal history. That
is, all the observations the decision maker has ever made constitute a problem for

him. In particular, if the past experiences are different, so are the problems.

The rest of the paper is organized as follows. Section 2 describes EU and CBDT.
Section 3 embeds CBDT models into EU models and EU models into CBDT models.

Section 4 concludes the paper.

2 Two Theories of Sequential Decision Making Prob-
lems

The present work considers a single decision maker who faces a sequence of decision
nodes. Time is discrete, and the decision maker is faced with decision node in each
period and takes an action in a finite set A. In the end of each period, he is informed
of the result of that period.®> In this environment, the decision maker uses either

an EU model or a CBDT model to solve the problem.

The axiomatization of the version of CBDT used in the present paper is given in
Appendix. The following is a description of the two theories used for the equivalence

result.

? Note that this model is very general. What is essentially required is that there are at most
countably many decision nodes. Though it is assumed that DM’s decision node and informa-
tion arrive alternately, one can always introduce dummy information to make a certain situation
consistent with the above description.



2.1 Expected Utility Theory

This subsection considers a situation in which the decision maker analyzes the past

experiences based on EU. A model based on EU, or an EU model, is given by:
<(Q7f)7A7R7f7u7l'L>7

where € is a state space, F is a c-algebra on Q, A is the set of available actions
introduced above, R is a countable set of possible results, or equivalently, pieces of
information, v : R — IR = (—o0,00) is a utility function, and p is a probability
measure on (2, F). The function f : UF_;AT x Q@ — IR is an outcome function
where AT is the cross product of A. Write fr(d@,w) = f(d,w) if @ = (a*,---,a’)

(T'=1,2,--+). A value fr(d,w) € R is the result in the T'th period at w € Q if

the decision maker has taken @ = (a',---,a”). Let hy = ((a',r),- -+, (a1, #T1))
be a history at period T = 2,3,---. The null history is denoted h;. Denote by
h(w,@) the history induced by w and a sequence of actions @ = (a',---,a’=1).

Let Hr denote the set of histories at time 7. In particular, H; = {7@1}. Write
H = US_ Hy. The conditional measure given h € H, denoted by 7, is a measure
on (2, F) and satisfies

_ pENY)

1y (E) = BTG

if 1(Qz) >0, where Qp = {w € Q: h(w,@) = h}.

VE € T,

In each period, the decision maker chooses an action to maximize the expected

utility in that period. His expected utility if he takes @ € A conditional on history
B = ((alv rl)v T (aT_17 rT_l)) S H is
Vialh) = Y up(fila,) = ryu(r), (1)
réR
where f;(a,-) = fr(@,-) with @ = (a',---,a” =1 a). The decision maker takes a € A

that maximizes (1). Note that the present specification is general enough to include



the case where the future is affected by the current action, and he cares about the
future payoff as well in making a decision today. In such a case, u(r) is interpreted
as the expected present value of the (future) payoff as opposed to an instantaneous

payoff.* Throughout the rest of the paper, it is assumed that V (a|h) is bounded.

2.2 Case-Based Decision Theory

The present work uses a modified version of the original CBDT in Gilboa and

Schmeidler (1995).> The current model of CBDT is given by:
<P AR, s,u>

where P is a set of decision problems, A is a set of actions, R is a set of results,
s:(Px A2 xR — [0,1] is a similarity function, and v : R — IR is a utility function.
A value s((p,a), (p,a'); ') is a similarity measure between (p,a) and (p',a’), which
may depend on r’. It is assumed that there exists a result, denoted by rg, such
that u(rg) = 0.° The set of cases is defined to be C'= P x A x R. That is, a
case is a triple (p,a,r) where p is a problem, a is an action, and r is its result. The
decision rule of CBDT is described as follows. Suppose that a decision maker, who is

characterized by u and s, is faced with a decision problem p, while the history at time

* In this case, V(a|h) is expressed as

V(alh) = ZNB(fT(a) =r) |u(r) + maxV(a'|h o (a,r))

a'€A
reR

where ho (a,r) is a concatenated history. Expand the space of results to R* = H x A x R. Then
define u*(r) (r € R*) as

u (r*) = u"(h,a,r) = u(r) + 2}3 Vi(d'|h o (a,r)).
If the horizon is finite, construct them by backward induction. If the horizon is infinite, some
additional assumptions are needed to ensure the existence of maximum.
® See Gilboa and Schmeidler (1995) for other modified forms.
5 The subsequent argument would go through but become more complicated without this
assumption.



T (T =1,2,--+)is hy = (c*,-++,c"1). In particular, the null history is denoted h;.
Let Hr be the set of all histories at time 7". Write H = U¥_; Hy. Given a problem p
and a history hy = ((p*,a', 1), -+, (pP Y aT= 7 T=1)) € Hy (T =1,2,-- ), every

action a € A is evaluated by

T-1
Ulalp, hr) = Z_:s (Pt aty; rhu(rt). (2)

The decision maker chooses a maximand of U. A past case which is more similar

to the possible present case is assigned more weight in evaluating an action. Write
s((p,a), C/) = s((p, a), (plv a/); T‘/).
Note that the present formulation is a generalization of the original model of
Gilboa-Schmeidler, in which the value of an action, say, a, is given by
S sy gulr), (3)
(g,a,r)EM

where M is the set of past cases, and p is the present problem.”

Notice that in (3) the summation is only over the set of past cases in which action
a was taken. In (2), the similarity measure is defined over the set of pairs of problems
and actions as opposed to the set of problems alone as in Gilboa-Schmeidler. Their
version also does not rely on the past result. The original theory is obtained if
it is assumed that s((p,a),(q,b);r) = 0 for all @ # b, and s((p,a),(q,a);r) =
s((p,b), (q,b);7") for all p,q € P, all a,b € A, and all r,r" € R. These differences are
necessary for the equivalence result. For example, if two acts have never been taken
in the past, they are assigned the same utility values in (3), which are typically not

the case in EU.

The present framework resembles the satisficing theory to the extent that the

" Gilboa and Schmeidler (1995) discuss several types of generalization, too. Also, see Gilboa
and Schmeidler (1997a), proposing act-similarity functions which are “similar” to the present
formulation.



original CBDT resembles it. The interpretation of the present formulation is that
the decision maker evaluates each action by comparing the past scenarios with
possible scenarios instead of comparing problems only. In fact, there is no reason
to preclude this possibility a priori. Throwing a stone at someone is often more

similar to kicking him than to shaking hands with him.

3 Embedding

This section shows that CBDT models can be embedded into EU models, and EU
models can in turn be embedded into CBDT models. Throughout the section, we

assume that P and R (or R), the set of results, are all countable (can be finite).

Given a CBDT model, < P, A, R,s,u >, this model is said to be embedded
in an EU model if there exists a model of the form < (9, F), A, R, f, 4, > such
that for all h € H, p € P, and all a,b € A, V(a|h) > V(b|h) holds if and only if
Ulalp, k) > U(b|p, h) holds where (p, k) and h correspond to each other as described
later. Similarly, given an EU model, < (9, F), A, R, f, 4, >, it is said to be
embedded in a CBDT model if there exists a model of the form < P, A, R,s,u >
such that for any history h € H\{h1} except the null history, any problem p, and
for all a,b € A, U(a|p,h) > U(b|p,h) if and only if V(a|k) > V(b|h) holds. In
the second definition, the null history should be excluded since CBDT can do little

without a case.

3.1 Embedding CBDT into EU

Consider a model of CBDT, < P, A, R,s,u > with H being the set of all histories.
Construct its embedded model of EU, < (Q,F), A, R, f, 4, >, in the following



manner. First, let

R=Rx P,
and
u(r, p) = u(r)
for all (r,p) € R. A result specifies the problem of the next period as well. Then let

Q= P x J[(RP* A%,

i=1

Interpretation is as follows. In each state w = (pl,w!,w? ---) € Q, p! is a pos-
sible problem encountered by the decision maker in the first period, and w' =
{F(pya;s h) Y pamyepxaxa, (t = 1,2,-++) is a possible realization in the ¢th period,
i.e., p' is a possible problem encountered by the decision maker in question, and
7(p, a, h) is a possible result including the problem of the next period, which typ-
ically depends on the current problem p and choice a, and history h. Let F; be
the o-algebra generated by the first ¢ + 1 elements of (p!,w!,--- W), i.e., F; is the
smallest o-algebra which contains any set (cylinder) F,, such that o’ = (p't,w't, )
isin £, if and only if p! = p'l and W™ = w7 forall 7 = 1,---,t. Let F = a(U2, ),
the o-field generated by F;’s.

With this preparation, the main task of embedding is to construct a prob-
ability measure on (€2, F) such that for all 7" = 1,2,---, for any history hy =
((p*,a",rt), -+, (pT=" a1, vT=1)) € Hr, and any current problem p’, and any
two actions a, b € A, V(alhy) > V(blhr) holds if and only if U(alp”,hy) >
U(b|p™, hr) holds where ht is the history (in EU) corresponding to (p', hr), i.e.,
hy = (p*, (a', (Y, p?)), -+, («T=1, (7T, pT))) € H. The following does this task

inductively.

In the beginning of the T'th period, the decision maker knows b7, or equivalently,

a problem p’ and the history hr = (c!,---,c!~1) with ¢ = (p!,al,r"). An action «a



is evaluated by
T-—1

Ulalp” hr) = Y (", a), e u(r). (4)

=1

Let py, . satisfy
1
Hip (Jrp(a) =)= — > s((p" a).c), (5)

K te{r|rT=r}

for all @ € A and all r € R\{ro}, where p* is given by

:u* = gleaAX Z Z S((pT7 a)v Ct)v (6)

reR te{r|r7=r}
which is always finite since only finitely many s(:)’s are added. We need this nor-
malization to make the probability of the entire set be one. For rq, define
Whp (Faplas) = o) = 1= > pg, (fr,(a,) = 7). (7)
r#ro
Now, calculate V(alhr) = ¥, cp i, (fr,(a,-) = r)u(r). Substituting (5) into the
right hand side of this expression, we obtain

T-1

LS S(0" 0, ). (8)

’u* =1

From (4), (8) is equal to

1

_*U(a|pT7 hT)7

1
for all @ € A where we also make use of u(rg) = 0. Therefore, V(alhr) > V (b|h1)
holds if and only if U(a|p”,hr) > U(b|p”,hr) holds. Repeat this exercise for all
p € P and all h € H. The state space is so large that the above construction is

consistent across problems and histories. A CBDT model is embedded into an EU

model.

Note that in this embedding, an increase in s((p?,a),c) results in an increase

in py,. (f5,(a,-) =r), ie., the more similar the current situation is to the past case

9



where action a led to result r, the higher the conditional probability of r given a.
In other words, high similarity corresponds, at least in the above sense, to high

correlation.

3.2 Embedding EU into CBDT

Consider a model of EU, < (9, F), A, R, f,u,; > with H being the set of his-
tories as defined in the previous section. Construct its embedded CBDT model,
< P, A, R,s,u >, in the following manner. Let P, the set of problems, be defined

as

let R = R, and let

for some ¢ so that @(r) + ¢ # 0 for all r € R. This linear transformation is needed
since some ratios of utilities are needed later. In this formulation, a problem is
considered as a history, i.e., totality of what is known at the time the problem

arrives.

With this preparation, a similarity function s : (P x A)* x R — IR is inductively
constructed. This task is started with the second period since case-based decision
theory is meaningless without a case.® In the second period, p? = hy is the problem

encountered by the decision maker. Let s satisfy

u(r)

u(rl)

S((B%a)vcl) = Z 20 (f?(a) = T‘)

reR

+ (9)

N | —

where a = a(hy, ') is constant across actions, but may depend on hy and ¢! so that

(9) is always between zero and one. Then it is verified that in the second period,

& One can cope with the first period problem if one modifies CBDT so that aspiration level is
different across actions.

10



Ul(alhg, ') > U(blhg,c') if and only if V (a|hy) > V (b|h2) since

Ulalhy, ) = s((ha, ), cu(r!) = a Y g, (f2(a) = ryulr) + % = aV(alhe) +

1
reR 2

holds.

Suppose that s(-,-) has been defined up to period 7' —1 (1" = 3,4,---). That
is, s((p,a), (p',a’);r"Yhas been defined for all a,a’ € A, all #' € R, and all p = hy
and p' = B, with by = (¢',---,¢t) and B}, = (¢'V, -+ ) such that ¢/ < t < T — 1
(T'=2,3,--+) and ¢ = ¢7 for 7 =1,---,t. Now define s(+,-) for the problems

possibly encountered by the decision maker in the T'th period. Let

« u(r) 1
s((p,a), (p',d);r) = ﬁ%ﬂﬁT(fT(a) = r)u(r’) + 5 (10)
for all a,a’ € A, v € R, and all p = hy and p' = b} with hy = (¢!,---, T

and h} = (c'1,--- ) such that t < T and ¢ = 7 for 7 = 1,---,¢t. In (10), «
is, as before, constant across actions and may depend on the past history so that
the expression is between zero and one. In this manner, the similarity function s is
defined for a relevant domain. To other pairs of cases, simply assign any arbitrary

numbers between zero and one.

It is now verified that for any h € H, U(alh,h) > U(blh, k) if and only if
V(alh) > V(b|h). Indeed, forall T = 1,2,-- -, all by = ((p*,a*,r'), -, (pT 1, aT=1 rT71)) €
Hyp,and all @ € A,

Ulalhr,hy) = 37 s((hya), (0, a');r'Yu(r!)



holds where the second equality is derived from (10).

Like in the previous embedding from CBDT to EU, there is a loose correspon-
dence between correlation and similarity: if the previously encountered case gives
the decision maker positive (resp. negative) utility, then the higher the probability
of obtaining a result with positive (resp. negative) utility under a certain action,

the more similar a pair of the present problem and the action is to the past case.

4 Conclusion

The present paper proved an equivalence result between expected utility theory and

case-based decision theory. Two implications of this equivalence result are:

(i) for an outside modeler, these two theories are observationally equivalent so that
it is impossible to distinguish the two unless he can access to the cognitive

process of the decision maker;

(i1) neither theory is rejected in favor of the other on the ground of the lack of

generality.

Several remarks are in order. First, although we regard embedding as the crite-
rion for equivalence, this is certainly only one way to make comparison between the
two theories. In particular, introducing some measure for complexity might help
differentiating EU and CBDT. Indeed, in the present formulation, given an original
model, its embedded model often becomes complicated. For example, for a CBDT
model with a finite set of problems, one typically needs an infinite state space for
embedding. On the other hand, for an EU model with a finite information set,
one typically needs an infinite set of problems in order to embed the CBDT model.

Moreover, while one can embed a model based on one theory into a model based

12



on the other theory, intuition which motivates the original model may be lost. It
is intuition on phenomena rather than formal capability of description of certain

situations that differentiates the two theories.

Another way to differentiate EU and CBDT is to impose appropriate restrictions
on these two theories to see their respective predictive power. There are many
empirical studies based on EU, which are normally conducted by imposing certain
restrictions on the model. Sometimes, constructing a specific model itself becomes
a restriction. Building a descriptive CBDT model is the next step if one wants to

compare the two theories.

Finally, this paper does not intend to dethrone expected utility theory, nor does
it try to diminish the significance of case-based decision theory. If one understands
the relation between the two processes of decision makings better than before, the

goal of the present paper would be achieved.

13



Appendix

This appendix provides the set of axioms that leads to the decision rule in
CBDT. It essentially follows Gilboa and Schmeidler (1995) with minor modification.
A preference order over actions is to be defined. Unlike Gilboa-Schmeidler, for every
p and history &, there is a separate order >, ; over the finite set of actions, A. It
is assumed that R = IR, and results are already measured in utility term. It is also
assumed that problems are always different after different histories. In evaluating
an action, take into account the results that other actions led to. Formally, given
h, let X = IR'h', where |h| is the number of cases in h, and the preference order is
on Z = XA¥4_ Given p and h, each act profile, a history related to an action, is
represented by a point in Z. If a case ¢ = (p,a, r) is the tth case in h, then an entry
for an action b and case c¢ is given by

SORTEL A o

0 otherwise.

For example, suppose that there are only two actions, @ and «’, and two results, r
and r’. Suppose further that h = ((p,a,r), (p',a’,r’)). Then the act profile for a is
represented by

((u(r),0:0,0), (0,u(r');0,0)). (12)

In this expression, the first four entries correspond to the first case, the second of
the final four entries is u(r’) since this entry corresponds to action @, which is now

evaluated, and the action chosen, a’, and so forth.

It is not assumed that >, ; is a complete order on Z. As one may see from the
above expression, it is meaningless to compare two vectors in Z unless they satisfy
(11). Let Z* be the set of all the vectors in Z which satisfy (11). Two act profiles

may be compared if and only if both are in Z*. Now state four axioms on >, .

14



A1l For all p € P and all h, =, is reflexive and transitive on Z. For all z,y € 7~,

either >, 5 y or y >, 5 @ holds.

A2 (continuity) For all p, all b, and all € Z*, {yly >, «} and {y|z =, y}

are closed (in the standard topology in R™).

A3 (separability) For all p, h, and all z,y,z,w € Z* with 2 + z and y + w in Z*

as well, if @ =, 5 y, and 2z >, w, then (x 4+ 2) >, ), (y + w).

A4 (strict separability) For all p, h, and all z,y,z,w € Z*, if 2 >, y, and

Z2 >, w, then (x4 2) >, (y+ w).

Proposition. If A1-A4 hold, then for all p € P and all h = (c!,---,cT71) €
Hp (T = 2,3,--+) with ¢/ = (p',a',r") (t = 1,---,T — 1), there exists a function

Spih - {ct, - .7CT—1} — IR such that z =, y iff

T-1 T-1
Z Z spn(ca(c a,a’) > Z Z spn(y(ct a,al).

t=1 acA t=1 acA

This proposition is proven step by step. In the following, write
“>” instead of >, whenever there is no confusion.
Observation.
1. For all z,y € Z*,
Trye -y s -
2. For all z,y,z,w € Z* such that x + 2z, y+ w € Z*, and z ~ w,
rrye (@42 = (y+w),
holds

15



Proof of the observation.

1. It is sufficient to prove one direction. Suppose z = y, and —z > —y. Then by
A4, 0=2+ (—z) > y+ (—y) =0. A contradiction.

2. Assume the presumptions of the claim. A3 and the assumptions imply that
rry=(r+2) = (y+w).
As for the converse, by the first observation, —z > —w holds. Then A3 implies

(@+z)=ytw)=a=@+z+) = (y+w+uw)=y.

One problem is that Z* is not a linear vector space. Given p € P and h, another

binary relation >, ; is defined as follows. First, it is complete and satisfies
T Ep,h Yy ift 2 Ep,h Y,

for all x,y € Z*. Omit the subscript from *’, too.

A1’ »'is complete (note that > is not), reflexive and transitive on Z.

A2’ (continuity) Vo € 7, {y|ly =" 2} and {y|z »' y} are closed.

A3’ (separability) Va,y,z,w e Z, 2 > yand z = w= (v + 2) =’ (y + w).

A4’(strict separability) Va,y,z,w € Z, [z =" yand z =" w] = (z+2) =’ (y+w).

It is verified that A1-A4 imply A1-A4’ for those vectors in Z*. We need some

other facts.

FlVe,yecZ, v—y>" 02 >y.

16



F2 (convexity) Va € Z, sets {yly =’ a}, {yle =' y}, {yly »' a}, and {yla >’ y}

are convex.

F3 In Z, define
A= {z]z »' 0},

and

B = {z|0 »' z}.

Then A is closed and convex, while B is open and convex. AN B = @ and

AU B = Z hold, too.

F4 If B =0, then s(-) = 0 satisfies the representation condition. If B # (), then by
the separating hyperplane theorem there exists a linear functional .S : 7 —R
such that

S(z) > 0,Va € A,

and
S(z) < 0,Vz € B.
Thus, there exists s, 5, : (P X A X R) x A> =R such that

T-1 T-1
xrppy iff Z Z spn(cta,aYz(ct a,a’) > Z Z spn(cya,a )y a,at),

t=1 a€A t=1 a€A
(13)

for all z and y in Z. By F1, for all 2,y € Z*, 2 >, y holds if and only if (13)
holds.

This proves the proposition. Since any two problems with different histories are
different, CBDT constructed in the text is obtained by letting s((p, a), (p,a');r") =
aspp((p',d,1"),a,a’)+ 3 where o and 3 are chosen in such a way that the similarity

value s(-) fits between zero and one.
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