Mathematics and Economic Modeling Problem set #1

Summer 2014(ay) Prof. Akihiko Matsui

No need to hand in. Use definitions with and without a prime (') as defined in class.

- 1. Prove the following statements in \mathbb{R}^1 .
- (a) $(a, +\infty)$ is open.
- (b) $\{a\}$ is closed.
- (c) [a,b] (a < b) can be expressed as an intersection of countable collection of open intervals.
- (d) (a,b) (a < b) can be expressed as a union of countable collection of closed intervals.
- (e) (x_n) with $x_n = 1/n$ converges to 0.
- (f) Given $S \subset \mathbb{R}^1$, $u \in \mathbb{R}^1$ is the supremum of S if and only if (i) $\not\exists x \in S(u < x)$, and (ii) $v < u \to (\exists x \in S(v < x))$.
- 2. Prove the following properties of closed sets in $X = \mathbb{R}^n$.
- (a) \emptyset, X are closed.
- (b) the intersection of any collection of closed sets is closed.
- (c) the union of any finite collection of closed sets is closed.
- 3. Show the equivalence between convergence and convergence' in \mathbb{R}^n .
- 4. Show the equivalence between closedness and closedness' in \mathbb{R}^n .

5. Show that a set F is closed if and only if it contains all of its boundary points in \mathbb{R}^n .

6. Show that every closed set can be expressed as an intersection of a countable collection of open sets in \mathbb{R}^n .

7. Give an example of a sequence of nonempty sets (I_n) that are bounded above and below such that $I_{n+1} \subset I_n$, but their intersection is empty.

8. Give an example of a sequence of closed nonempty sets (J_n) such that $J_{n+1} \subset J_n$, but their intersection is empty.