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Abstract. This paper provides a decentralized dynamic foundation of the Nash bar-
gaining solution, which selects an outcome that maximizes the product of the individual
gains over the disagreement outcome. We investigate a canonical search theoretic model
of a society in which two agents are randomly matched, facing a pair of non-transferable
payoffs drawn randomly from a compact convex set, and choose whether or not to agree
to form a partnership, which is formed if and only if both of them agree to do so, subject
to a small probability of exogenous break down. We show that as the discount factor
converges to one, and the probability of exogenous break down vanishes, the Nash bar-
gaining solution emerges as the unique undominated strategy equilibrium outcome. Each
agent in a society, without any centralized information processing institution, behaves
as if he agreed upon the Nash bargaining solution.

Keywords: Matching, Search, Undominated strategy equilibrium, Nash bargaining
solution

1. Introduction

This paper studies a random matching model, in which each agent has an option to
form and terminate a long term relationship with a matched partner. The society is
populated with two groups of continua of agents, row and column agents. In each period,
unmatched row agents and column agents are matched in pairs to face a relation-specific
pair of payoffs drawn randomly from a compact convex set. They form a long term
relationship if both agree upon this pair of payoffs; otherwise, they both return to their
respective pools of unmatched agents. The long term relationship lasts until either one of
the agents terminates it or a random shock forces the pair to separate. When the long
term relationship is dissolved, both agents return to their respective pools of unmatched
agents.

We demonstrate any undominated strategy equilibrium must sustain the Nash bar-
gaining solution in the limit of the discount factor and the continuation probability of
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the partnership converging to one.1 In the equilibrium, every agent in the society would
behave as if he had agreed upon the Nash bargaining solution, despite the absence of a
central authority to enforce the solution, or an institution to collect and disseminate the
information in the society.2 We thus provide a social foundation of the Nash bargaining
solution, in the sense that the outcome arises through the interactions of all agents in the
society.

The power of the axiomatic approach of Nash (1950) stems from the abstraction of
details of the bargaining process. Yet, the same approach needs the strategic approach
to reveal how the bargaining protocol can affect the bargaining outcome (St̊ahl (1972)
and Rubinstein (1982)). On the other hand, the non-cooperative foundation of the Nash
bargaining solution has been subject to the criticism that the real bargaining process
does not necessarily follow any pre-specified bargaining protocol, and that the proposed
protocols are sensitive to seemingly minor details of the model. Raiffa (1982) eloquently
describes the aspect of art in bargaining, while Kreps (1990) (pp.563-565) discusses some
problems concerning non-robustness of the solution of Rubinstein (1982), with respect
to a seemingly “insignificant” change in the model, including difference in the speed of
response and an introduction of linear costs of rejecting offers instead of discounting.
Kreps (1990) also argues that the same problem arises in any model where agents can
make offers whenever they wish but have to commit to the outstanding offer for a fixed
amount of time as examined by Perry and Reny (1993).

Our approach is strategic in the sense that we spell out the details of the game as a
game in extensive form to invoke a refinement of Nash equilibrium. In contrast to the
strategic bargaining models which spell out specific trading procedures as a part of the
formal description of the model, we regard the trading procedure as a search process for
an agreeable outcome between the two agents, where the outcome is characterized by the
agreed payoff vector along with the probability of agreement. This search process can
be interpreted as a reduced form of a complex process, involving search for a particular
trading protocol and the selection of an equilibrium if multiple equilibria exist in the
selected protocol.

Our model of the society is built on a canonical matching model, sharing key features
with search theoretic models of markets (see, e.g., Mortensen and Pissarides (1994), Ru-
binstein and Wolinsky (1985) and Burdett and Wright (1998)). In contrast to assuming
that the payoff of the partnership is determined by the Nash bargaining solution as in
Mortensen and Pissarides (1994), we derive the Nash bargaining solution as an equilib-
rium outcome of the social dynamics. Instead of specifying a particular bargaining protocol
as in Rubinstein and Wolinsky (1985), we delineate a class of protocols that sustain the

1The Nash bargaining solution is a pair of payoffs that maximizes the product of the individual gains
over the disagreement outcome.

2Zeuthen (1930) proposed a bargaining solution more than two decades before Nash (1950). There, the
risk of breakup and the amount of concession are balanced between the two parties, which is the core of the
Nash bargaining solution (Nash (1953)). Zeuthen applied his concept to labor dispute, discussing the case
of transferable utility only. Later, Harsanyi (1956) reformulated Zeuthen’s theory to show the equivalence
of Zeuthen’s and Nash’s concepts.
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Nash bargaining solution, as a search process for an agreeable outcome to understand how
robust the main conclusion of Rubinstein and Wolinsky (1985) is.3

Our model is essentially identical with Burdett and Wright (1998), who investigate a
two-sided search model with nontransferable utility. While we focus on the limit properties
of equilibrium outcomes as the discount factor and the continuation probability converge
to one, Burdett and Wright (1998) are mainly concerned with economic properties of
equilibrium outcomes for a given discount factor and a fixed continuation probability.4

The rest of the paper is organized as follows. Section 2 formally describes the basic
model and investigates the properties of threshold equilibria. In section 3, we state the key
result, placing the proof in the appendix. Section 4 examines the role of each assumption
to understand how robust the main result is.

2. Basic Model

2.1. Environment. Time is discrete, 1, 2, . . . , and its generic element is written as t. Let
Ir = [0, 1) and Ic = [1, 2) be the sets of continua of infinitely lived anonymous row and
column agents, and their generic elements are often written as r and c, respectively. Write
I = Ir ∪ Ic. In each period, each row agent is matched with a column agent, and vice
versa. There are two pools of single agents, one for row agents, and the other for column
agents. The set of row (resp. column) agents in the pool in the beginning of period t is
denoted by U r

t (resp. U c
t ). Let us write Ut = U r

t ∪ U c
t .

Agents in U r
t are randomly matched with some agent in U c

t .5 We assume that for all
r ∈ U r

t , c ∈ U c
t and for all Lebesgue measurable sets Sc ⊂ U c

t and Sr ⊂ U r
t ,

P(r meets someone in Sc) =
μ(Sc)
μ(U c

t )
and P(c meets someone in Sr) =

μ(Sr)
μ(U r

t )
(2.1)

where μ is the Lebesgue measure. As we shall see later, μ(U r
t ) and μ(U c

t ) are bounded
away from zero.

The set I \ Ut consists of the agents who agree to stay with the same partner in the
previous period. Let us denote by P a partition of I \ U each element of which is a pair
of agents:

P = {{rα, cα}}α.

If {i, j} ∈ P , then we say that i and j are paired. Let

qt = (U r
t , U

c
t ,Pt)

3Young (1993) provides us with an evolutionary foundation of the Nash bargaining solution. In the
sense that a random matching society is considered, our model is related to his. But again, his model
assumes a specific bargaining protocol.

4Our model is also related to Ghosh and Ray (1996) and Fujiwara-Greve and Okuno-Fujiwara (2009),
where agents are randomly matched to play a repeated game with an option to separate. Like in these
models, the agents in our model form a partnership voluntarily, and can terminate the existing partnership
unilaterally.

5Since we cannot construct a probability measure that involves “uniform” random matching (or a
continuum of i.i.d. random variables in general Judd (1985)), we consider a random matching model in
the spirit of Gilboa and Matsui (1992), i.e., a finitely additive measure instead of a countably additive
measure, and assume that the law of large numbers holds. Note that Lebesgue measure can still be defined
on I , that satisfies countable additivity.
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be a coalitional structure at time t. Let Q be the set of all coalitional structures.
Suppose that r ∈ U r

t and c ∈ U c
t are matched. We assume that the two agents face a

bargaining problem 〈V, v0〉, where V is a compact convex subset of R
2 and v0 = (v0

r , v
0
c) ∈

V is the disagreement payoff vector. In order to make the bargaining problem non-trivial,
it is assumed that there exists (vr, vc) ∈ V such that vr > v0

r and vc > v0
c . We assume

that the disagreement payoffs are the same across the agents of the same type.
Let us assume that a relation-specific pair of payoffs v = (vi, vj) ∈ V is drawn from V

according to a probability measure ν on V , where vi is the payoff for the row agent i and
vj is the payoff for the column agent j. We assume that ν has a density function fν which
is bounded away from zero and continuous on V . One can interpret this random process
as a reduced form of a complex bargaining process, which induces v. Examples will be
given subsequently.

We spell out the conditions on V and fν which will be used in the proof to sustain the
Nash bargaining solution.

Assumption 2.1. V is compact and convex. The measure ν has a density function fν

such that fν is continuous over V , and there exists L > 0 such that fν(vr, vc) ≥ L for all
(vr, vc) ∈ V .

Conditioned on one’s own payoff, each agent chooses whether or not to agree to stay
with the same partner in the next period: the action space of each agent is {A,R} where
A stands for “agree” and R for “reject”. While we assume that the decision of agent
i ∈ I choosing A or R is conditioned only on vi instead of (vi, vj), the main result remains
unchanged even if we assume that each agent can observe the other party’s payoff.

Given v = (vr, vc), if r ∈ U r
t and c ∈ U c

t agree, then they form a parternship and obtain
vr and vc, respectively. If either agent chooses R, then they remain in their respective
pools of singles, receiving v0

r and v0
c , respectively.

Suppose {r, c} ∈ Pt with the agreed payoff vector v = (vr, vc). If both agents agree, then
they remain matched for another round, i.e., {r, c} ∈ Pt+1 with probability δ, receiving the
same relation-specific payoffs v = (vr, vc). But, with probability 1 − δ, their partnership
is terminated, and they go back to their respective pools of singles, receiving v0

r and v0
c ,

respectively. We assume that these shocks are i.i.d. across partnerships and across time.
On the other hand, if either agent chooses R, then the row and column agents return to
their respective pools of singles, obtain v0

r and v0
c , and wait for the next period for a new

match: i ∈ U r
t+1 and j ∈ U c

t+1.
We call δ < 1 the continuation probability. Note that this assumption implies that

μ(U r
t ) ≥ 1− δ and μ(U c

t ) ≥ 1− δ hold. The timing of matches and decisions is illustrated
in Figure 1.

By a long term relationship, we mean a particular relationship that lasts for multiple
periods.

Definition 2.2. We say agents r and c are in a long term relationship at time t if there
exists k ≥ 1 such that for all t′ ∈ {t− k, . . . , t},

{r, c} ∈ Pt′,
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Figure 1. Timing of Matches and Decisions

We can interpret fν as a composite function of the two search processes: one for a
bargaining protocol, and the other for an equilibrium outcome for a given bargaining
protocol. Let us describe an example for the first step of the search process.6

Example 2.3. Suppose that whenever two agents are matched, they face the divide-a-
dollar game. Let V be given by

V = {(vr, vc)|vr + vc ≤ 1, vr ≥ 0, vc ≥ 0}.
Let B(i, p, w) be the alternating offer bargaining model of Rubinstein (1982), in which agent
i ∈ {r, c} makes the first offer, p ∈ [0, 1] is the continuation probability and w ∈ [0, 1] is the
size of the total surplus. One can view 1 −w as the amount of friction that burns part of
surplus to be divided between the two agents. If the two agents do not reach an agreement
before the bargaining terminates, both agents receive 0. Then the unique subgame perfect
equilibrium of the bargaining game B(r, p, w) is given by(

1
1 + p

w,
p

1 + p
w

)
,

and that of B(c, p, w) is given by (
p

1 + p
w,

1
1 + p

w

)
.

Consider

B =
⋃

i∈{r,c}

⋃
p∈[0,1]

⋃
w∈[0,1]

B(i, p, w)

6We are grateful for Michihiro Kandori for suggesting this example.
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as the collection of all feasible bargaining protocols assigned to the two agents to find an
agreeable outcome.

Consider a probability distribution ν̃ over B. Although ν̃ is a distribution over the set
of bargaining protocols, agents can calculate the equilibrium payoff vector induced by these
protocols. Thus, in equilibrium, the measure ν̃ induces a measure ν over V .

Suppose further that ν̃(i, ·, ·) (i = r, c) has a density function over [0, 1] × [0, 1], and it
is continuous and bounded away from zero. Then ν satisfies Assumption 2.1.

If the bargaining protocol admits multiple equilibria, we can regard ν as an equilibrium
selection process used by the two agents, which is not modeled by the strategic bargaining
game, as described by the next example.7

Example 2.4. Suppose that the two agents agree upon bargaining protocol B, in which V
is the set of equilibrium payoff vectors. To select a particular equilibrium payoff vector,
the two agents hire an outsider, called the “arbitrager”, who selects an outcome form
(vr, vc) ∈ V according to a probability measure ν, and makes a take-it-or-leave-it offer
to each party. If either party rejects the offer, then both parties receive the disagreement
payoff.

We can also consider a composite of the above two examples. Conditioned on {r, c}
who are matched, a bargaining protocol B ∈ B is selected according to probability density
f1(B) over B, as in Example 2.3. Conditioned on each B ∈ B, let us assume that a par-
ticular equilibrium payoff vector v of B is selected according to density function f2(v|B).
Then,

fν(v) =
∫

B∈B
f2(v|B)f1(B)dB

summarizes the entire process of search for an agreeable outcome, including the negotiation
over the bargaining protocol, and the negotiation within the given protocol.

2.2. History and strategy. We assume that each agent i ∈ I observes only his payoff
and his own action in t:

si,t = (vi,t, ri,t, di,t)

where vi,t is the proposed payoff, ri,t ∈ {A,R} is the reaction and di,t ∈ {0, 1} is the
coalitional status after ri,t, 0 if i ∈ Ut and 1 otherwise, of agent i in period t. The realized
payoff ui,t is given by ui,t = di,tvi,t + (1 − di,t)v0

i , where v0
i = v0

r (resp. v0
c ) if i ∈ Ir (resp.

i ∈ Ic).
Let hi,1 = ∅ be the null history. At the beginning of period t > 1, agent i knows

hi,t = (si,1, . . . , si,t−1)

which we call the private history of agent i in t. Let Hi,1 = {hi,1}, Hi,t (t > 1) be the set
of all private histories of agent i in t, and Hi = ∪t≥1Hi,t be the set of all private histories
of agent i. Let Hi be endowed with a natural measure.8

7We are grateful for Mehmet Ekmekci for the reference of Compte and Jehiel (2004).
8To be precise, the natural measure in this case is the product measure where the first coordinate of

each si,t is endowed with the Lebesgue measure, and the remaining two coordinates are endowed with the
counting measures.
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A strategy of agent i ∈ I is a measurable function

fi : Hi × R → {A,R}.
Given a private history hi,t and a payoff vi,t, agent i’s action induced by fi is fi(hi,t, vi,t) ∈
{A,R}. Let Fi be the set of strategies of agent i. Let ht = (hi,t)i∈I be the social history
at time t. A strategy profile f = (fi)i∈I ∈ ×i∈IFi is measurable if f−1(A) = {(h, v)|∀i ∈
I [si(hi, vi) = A]} is measurable. Let F be the set of measurable strategy profiles. Given
f ∈ F , let f−i ∈ F−i be a strategy profile of the agents except agent i where all the other
agents follow f .

A strategy profile f = (fi)i∈I induces a distribution over outcome paths. In period t, a
social outcome is given by

st = ((si,t)i∈I , qt),

where qt is the coalitional structure in period t.
Given a measurable strategy profile f ∈ F , the payoff function of agent i is given by

Ui(f) = Ef

[
(1 − β)

∞∑
t=1

βt−1ui,t

]
(2.2)

where Ef is the expectation operator induced by f , and β ∈ (0, 1) is a discount factor. We
often omit superscript “f” to simply write “E”.

2.3. Solution concept. The basic solution concept is Nash equilibrium.

Definition 2.5. A measurable strategy profile f∗ ∈ F is a Nash equilibrium, or simply
an equilibrium, if for all i, for all fi ∈ Fi,

Ui(f∗) ≥ Ui(fi, f
∗
−i).

Each agent is infinitesimal, and no public announcement mechanism exists in the so-
ciety. As a result, the probability distribution over outcomes does not change even after
a unilateral deviation from f∗. The continuation game off the equilibrium path is the
same as the one on the equilibrium path in terms of probability distribution except that
deviating to “A” will result in “punishment” from one’s partner.

Given two private histories hi, h
′
i, and the most recent draw vi, define the continuation

game strategy of agent i as

fi(h′i, vi|hi) = fi((hi ◦ h′i), vi)

where hi◦h′i is the concatenation of hi and h′i. Given history h, define f(·|h) = (fα(·|h))α∈I

as the profile of continuation game strategies.
Given f , let us define the continuation value of agent i following private history hi,t as

Ui(f |hi,t) = Ef

[
(1 − β)

∞∑
k=0

βkui,t+k

∣∣∣ hi,t

]
.

In an equilibrium, the continuation value of the agent in period t is a function of di,t−1 and
vi,t, where di,t−1 ∈ {0, 1} indicates whether the agent is in the pool of singles (di,t−1 = 0)
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or is paired (di,t−1 = 1) in period t − 1. Therefore, the continuation value of agent i
depends only upon di,t−1 and vi,t. Thus, instead of Ui(f |hi), we consider

W 0
i (hi) = Ui(f |hi ◦ (·, ·, 0))

and

Wi(vi, hi) = Ui(f |hi ◦ (vi, A, 1))

for any hi and vi where Wi(vi, hi) is the expected continuation value conditional upon the
event that the opponent accepts the proposed payoff in that period.

Since the action by a single agent does not change the distribution over social outcome,
every agent in the same population faces the same distribution over states along the
equilibrium path. Thus, in each period t, all agents of the same type take the same action
conditioned on di,t−1 and vi,t. Hence, we can represent an equilibrium by a profile of value
functions,

(W 0
r (hr), W 0

c (hc);Wr(vr, hr), Wc(vc, hc))(vr,vc)∈V,hr,hc

where r and c represent the row and column agents, respectively.
This game admits a trivial equilibrium that consists of the weakly dominated strategy

fr(hr, vr) = fc(hc, vc) = R ∀(hr, vr), (hc, vc).

To see this, note that forming a partnership requires acceptance by both parties. Thus,
against the perpetual rejection by the other party, no attempt to form a partnership is
successful. As a result, a pair of perpetual rejection strategies forms a Nash equilibrium.
Given this pair of strategies, the continuation game payoff is (v0

r , v
0
c ). Conditioned on

any (vr, vc) where vr > v0
r and vc > v0

c , if an agent has a small chance of accepting the
outcome, then it is the best response of the other party to accept the outcome. Thus, the
perpetual rejection is a weakly dominated strategy.

The following definition of undomination, albeit weaker than the standard definition,
suffices for our purpose. It basically states that agent i ought to accept the payoff vi if
and only if the conditional continuation value Wi(vi, hi) of acceptance conditioned on the
opponent’s acceptance is greater than the continuation value W 0

i (hi) of rejection.

Definition 2.6. An equilibrium f∗ = (f∗i )i∈I is an undominated strategy equilibrium (an
undominated equilibrium for short) if ∀i ∈ {r, c},

Wi(vi, hi) >W 0
i (hi) ⇒ f∗i (hi, vi) = A,

and

Wi(vi, hi) < W 0
i (hi) ⇒ f∗i (hi, vi) = R.

Note that this definition does not say anything about the opponent’s possibility of
acceptance, and therefore, vi may never be realized even if Wi(vi, hi) > W 0

r (hi) holds. For
the rest of the paper, we focus on undominated equilibria.
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3. Result

Let vN = (vN
r , v

N
c ) be a Nash bargaining solution:

vN = arg max
v∈V,(vr,vc)>(v0

r ,v0
c )

(vr − v0
r)(vc − v0

c ).

Let us now state the main result of this paper.

Theorem 3.1. For all ε > 0, there exist δ′ < 1 and β′ < 1 such that if δ ∈ (δ′, 1) and
β ∈ (β′, 1), then for all undominated equilibrium, for all i ∈ {r, c}, all vi, and all hi along
the equilibrium path,

|W 0
i (hi) − vN

i | < ε,

and
|Wi(vi, hi) − vN

i | < ε.

While the main result obtains for any undominated equilibrium, it is more convenient to
describe the intuition behind the theorem, using a “stationary” undominated equilibrium
in which the equilibrium strategy of player i depends only upon whether player i is in
the pool of singles or whether player i is in a partnership with some player j, receiving
vi as agreed upon. After we state and prove the main result for the class of stationary
undominated equilibria, we prove Theorem 3.1 for all undominated equilibria.

3.1. Stationary undominated equilibrium. Let us state the definition of stationary
equilibrium.

Definition 3.2. An equilibrium f∗ = (f∗i )i∈I is stationary if the distributions of coali-
tional structure, and one-shot actions of the agents are stationary across time: μ(U r

t ) =
μ(U c

t ) is constant across time, and for a given v = (vr, vc) ∈ V , μ({i ∈ U r
t | f∗i (hi, vr) = A})

and μ({i ∈ U c
t | f∗i (hi, vc) = A}) are constant across histories (hi)i∈I induced by f∗.

If a profile of value functions

(W 0
r (hr), W 0

c (hc);Wr(vr, hr), Wc(vc, hc))(vr,vc)∈V,hr,hc

is induced by a stationary equilibrium f∗, then we can drop hr and hc from the argument
of the value function, and write

(W 0
r , W

0
c ;Wr(vr), Wc(vc))(vr,vc)∈V .

We focus on the value functions of the row agent, as the computation of the column agent’s
value function follows the same logic. In a stationary undominated equilibrium, given vr,
agent r chooses A if

Wr(vr) > W 0
r ,

and R if

Wr(vr) < W 0
r .

Wr(vr) is decomposed into

Wr(vr) = (1 − β)vr + β
[
δpcWr(vr) + (1 − δpc)W 0

r

]
,(3.3)
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where pc is the probability of acceptance by the partner conditional upon the information
available to agent r. From (3.3), we have

Wr(vr) =
1 − β

1 − βδpc
vr +

β(1 − δpc)
1 − βδpc

W 0
r .(3.4)

Observe that

Wr(vr) > W 0
r

holds if and only if

vr > W 0
r ,

independently of the value of pc. Hence, the optimal strategy must be a threshold rule:
every row agent chooses A if vr > W 0

r and chooses R if vr < W 0
r . Similarly, each column

agent uses W 0
c as an equilibrium threshold. Recall that (vc, vr) is drawn according to ν,

which is atomless. Thus, almost surely, the equilibrium decision rule must be deterministic.
Also, stationarity implies that if agent r accepts vr in period t, then it is optimal for agent
r to choose A in t′ ≥ t. In particular, if an agent chooses A to form a partnership upon
drawing vr, then it is optimal for the agent to choose A after the partnership is formed.
Thus, the existing partnership is dissolved in a stationary undominated equilibrium only
through the exogenous shock that arrives with probability 1 − δ in each period. Hence,
we have pc = 1.

Given the threshold decision rule, we decompose W 0
r into

W 0
r = (1 − β)v0

r + β

[
(1 − pW 0

)W 0
r +

∫
(v′r,v′c)≥(W 0

r ,W 0
c )
Wr(v′)dν(v′)

]
,(3.5)

where pW 0
is given by

pW 0
= ν([W 0

r ,∞)× [W 0
c ,∞)) =

∫
(v′r ,v′c)≥(W 0

r ,W 0
c )

dν(v′),(3.6)

the probability of the event that agent r forms a partnership with a column agent. Let
Pr be such an event. Similarly, Pc is an even that a column agent c forms a partnership
with a row agent r.

Solving (3.3) and (3.5) for the row agent and repeating the same calculation for the
column agent, we have[

W 0
r

W 0
c

]
=

1 − βδ

1 − βδ + βpW 0

[
v0
r

v0
c

]
+

βpW 0

1 − βδ + βpW 0

[
E(vr|Pr)
E(vc|Pc)

]
,(3.7)

or

(1 − βδ)
[
v0
r −W 0

r

v0
c −W 0

c

]
+ βpW 0

[
E(vr|Pr) −W 0

r

E(vc|Pc) −W 0
c

]
= 0.(3.8)

We first prove the existence of a stationary undominated equilibrium.

Proposition 3.3. A stationary undominated equilibrium exists.

Proof. See Appendix A. ��
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Let (W 0
r , W

0
c ) be the pair of value functions in a stationary undominated equilibrium

conditioned on the event that an agent is in the pool of singles. Given (W 0
r , W

0
c ), we can

construct an equilibrium strategy. Given r ∈ U r, agent r chooses A if

vr > W 0
r ,

and R if

vr < W 0
r .

From (3.8), we know this threshold strategy is indeed an optimal strategy, since

vr ≥W 0
r

if and only if

Wr(vr) ≥W 0
r .

It is straightforward to prove that the described threshold rule is optimal, following every
history. Since any stationary undominated equilibrium strategy is completely character-
ized by its threshold conditioned on the event that the agent is in the pool of singles, we
can write W 0 = (W 0

r , W
0
c ) to represent a stationary undominated equilibrium.

Note that as βδ → 1, the first term in (3.8) vanishes. Therefore, the second term has
to vanish, in order to satisfy the equality, which implies that pW 0 → 0. This is the case
only if (W 0

r , W
0
c ) ∈ V converges to the Pareto frontier of V as βδ → 1.

Lemma 3.4. Any stationary undominated equilibrium outcome is Pareto efficient in the
limit of βδ → 1.

From (3.7), Lemma 3.4 implies that for i ∈ {r, c},
lim

βδ→1
|W 0

i − E(vi|Pi)| = 0,

which in turn implies that

lim
βδ→1

1 − βδ

1 − βδ + βpW 0 = 0.

As βδ goes to one, the expected number of periods in which an agent stays in the pool
of singles increases. However, the proportion of periods of an agent’s staying in the pool
converges to zero in the limit.

We now establish the conclusion of Theorem 3.1 for stationary undominated equilibria.

Proposition 3.5. For all ε > 0, there exist δ′ < 1 and β′ < 1 such that if δ ∈ (δ′, 1) and
β ∈ (β′, 1), then for all stationary undominated equilibrium, for all i ∈ {r, c}, all vi,

|W 0
i − vN

i | < ε,

and
|Wi(vi) − vN

i | < ε.

The proof has a geometric intuition, if V is a triangle in R
2 with the right angle at v0,

as depicted in Figure 2. Let us first sketch the proof if ν is a uniform distribution over
V , and then explain how the result can be extended to a general ν that has a continuous
density function fν . A formal proof can be found in Appendix B.
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We make a series of observations. Since W 0 = (W 0
r , W

0
c ) is a convex combination of

vectors in V , W 0 ∈ V . If V is a right triangle with the right angle at v0 = (v0
r , v

0
c ), then

the Nash bargaining solution vN = (vN
r , v

N
c ) is the middle point of the long edge (i.e., the

Pareto frontier) of V . Connect vN with v0, and choose any point W 0 = (W 0
r , W

0
c ) ∈ V .

We show that if W 0 is located above the line segment connecting v0 and vN , (3.8) cannot
hold. A symmetric argument shows that no W 0 located below this line segment can
be a solution of (3.8). Thus, if W 0 solves (3.8), then it should be located on this line
segment. Then, Lemma 3.4 implies that W 0 → vN as βδ → 1, thus completing the proof
of Proposition 3.5.

W 0 = (W 0
r ,W

0
c ) v2 = (·, W 0

c )

v1 = (W 0
r , ·)

ṽ = v1+v2

2

(E(vr|Pr),E(vc|Pc))
Magnify Δ(W 0) �

W0 = (W0
r , W0

c )

v1

v2

v0 = (v0
r , v

0
c)

vN = (vN
r , v

N
c )

V

Figure 2. Δ(W 0) is the triangle formed by W 0, v1 and v2 . Vector (E(vr |Pr)−
W r

0 , E(vc|Pc)−W c
0 ) points to the centroid of triangle Δ(W 0), which is embedded

in the line segment connecting W 0 and ṽ. If V is a right triangle, Δ(W 0) is similar
to V . The dashed line of the two triangles are parallel to each other.

Fix W 0 located above the line segment connecting v0 and vN . We shall show that
W 0 cannot solve (3.8). Let Δ(W 0) be the collection of payoff vectors in V that Pareto
dominate W 0. Since V is a right triangle, Δ(W 0) and V are similar.

Since fν is uniform over right triangle Δ(W 0), (E(vr|Pr), E(vc|Pc)) coincides with the
centroid of Δ(W 0). Thus, vector (E(vr|Pr) −W 0

r , E(vc|Pc) −W 0
c ) is on the line segment

connecting W 0 and the middle point of the long edge of right triangle Δ(W 0). Note that
this line segment is parallel to the line segment in connecting v0 and vN .

Since Δ(W 0) and V are similar, and the long edge of Δ(W 0) is a subset of the long
edge of V ,

E(vc|Pc) −W 0
c

E(vr|Pr)−W 0
r

=
vN
c − v0

c

vN
r − v0

r

.
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Since W 0 is “above” the line segment connecting v0 and vN ,

W 0
c − v0

c

W 0
r − v0

r

>
vN
c − v0

c

vN
r − v0

r

.

Hence, [
E(vr|Pr) −W 0

r

E(vc|Pc) −W 0
c

]
and

[
v0
r −W 0

r

v0
c −W 0

c

]
(3.9)

are not linearly dependent, and therefore, W 0 cannot solve (3.8).
For a general distribution with a continuous density function fν , (E(vr|Pr)−W 0

r , E(vc|Pc)−
W 0

c ) may not be equal to the centroid of Δ(W 0). The discrepancy is caused by the devi-
ation of fν over Δ(W 0) from the uniform distribution. The conclusion follows if we can
show that in the neighborhood of the Pareto frontier of V , fν over Δ(W 0) is “close” to
the uniform distribution.

Note

E(vc|Pc) −W 0
c

E(vr|Pr) −W 0
r

=

∫
v≥W0(vc −W 0

c )fν(v)dv∫
v≥W0(vr −W 0

r )fν(v)dv
.

Let ρ be the distance between W 0 ∈ V and the Pareto frontier of V . Since fν is
continuous over a compact set V , it is uniformly continuous. Thus, ∀ε > 0, ∃ρ(ε) > 0 such
that ∀ρ ∈ (0, ρ(ε)),

sup
v≥W0

fν(v)− inf
v≥W0

fν(v) < ε.

Define f = infv≥W0 fν(v). Since fν satisfies Assumption 2.1, f > 0. Then, we have[
f

f + ε

] ∫
v≥W0(vc −W 0

c )dv∫
v≥W0(vr −W 0

r )dv
≤ E(vc|Pc) −W 0

c

E(vr|Pr) −W 0
r

≤
[
f + ε

f

] ∫
v≥W0(vc −W 0

c )dv∫
v≥W0(vr −W 0

r )dv
.

As βδ → 1, W 0 converges to the Pareto frontier and ρ→ 0. Hence, we have

lim
ε→0

lim
βδ→1

E(vc|Pc) −W 0
c

E(vr|Pr) −W 0
r

=
vN
c − v0

c

vN
r − v0

r

as desired.

3.2. Undominated equilibrium. Since each agent is infinitesimal, Proposition 3.5 holds
for all undominated equilibria. To see this, we need to characterize the set of the undom-
inated equilibrium value functions, when each player observes (vr, vc). Abusing notation,
let

Wi = (W 0
i , (Wi(v))v∈V ) ∀i ∈ {r, c}

be an equilibrium value function of player i conditioned on his present state and v ∈ V
following a history hi. We intentionally suppress private history hi. Since each individ-
ual agent is infinitesimal, every row agent and every column agent must use the same
equilibrium strategy. Thus, we can represent an undominated equilibrium as

W = (W 0
r , W

0
c ; (Wr(v)), (Wc(v)))v∈V .
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Let W be the set of all undominated equilibrium value functions. Since the structure of
the game remains the same in every period, the set of all undominated equilibrium value
functions remains the same over periods.

Let F be the collection of all bounded functions of V , endowed with the topology
induced by the pointwise convergence of functions. Clearly, W ⊂ V × F 2.

Lemma 3.6. W is compact.

Proof. See Appendix D ��
Consider a probability measure ξ over W . We can write down a convex combination of

value functions in W as a positive linear functional

L(ξ) =
∫

W∈W
Wdξ(W ).

Define the convex hull of W as the collection of all possible convex combination of value
functions in W . Using our notation, we can write the convex hull as

co(W) = {L(ξ) | ξ is a probability distribution over W}.
We call ξ degenerate, if ξ is concentrated at a particular element W ∈ W . Otherwise, we
call ξ non-degenerate.

We endow a metric over co(W) in terms of weak convergence of measures. Clearly,
co(W) is convex and compact.

Definition 3.7. A point L ∈ co(W) is an extreme point, if there is no non-degenerate ξ
such that L = L(ξ). Given a set X , let e(X) be the collection of all extreme points of X .

We use the following result, known as Krein-Milman theorem.

Lemma 3.8. Suppose that X is convex and compact. Then,

X = co(e(X)).

Proof. See Royden (1988). ��
By invoking Krein-Milman theorem to (3.10),

co(W) = co(e(co(W))).

Since ∅ �= W ⊂ co(W), Krein-Milman theorem implies

e(co(W)) �= ∅.
By the definition of an extreme point, if L ∈ e(co(W)), then we can identify L as a point
in W . Thus,

∅ �= e(co(W)) ⊂ W .(3.10)

Under this convention, we regard an extreme point as a point in W instead of a linear
functional.

Proposition 3.9. An extreme point W ∈ e(co(W)) ⊂ W can be sustained by a stationary
undominated equilibrium.

Proof. See Appendix E. ��
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Proposition 3.5 shows that any equilibrium in which the decision rule is stationary, the
pair of value functions (W 0

r , W
0
c ) satisfies

lim
βδ→1

(W 0
r , W

0
c ) = (vN

r , v
N
c ).(3.11)

Thus, if W = (W 0
r , W

0
c , (Wr(v)), (Wc(v))) ∈ W is an extreme point, then it can be sus-

tained by a stationary undominated equilibrium and (3.11) holds. Since

W ⊂ co(W) = co(e(co(W))),

any pair of undominated equilibrium value functions converges to the Nash bargaining
solution in the sense of (3.11), if each extreme point converges to the Nash bargaining
solution.

4. Discussion

4.1. General ν. The main conclusion of the paper continues to hold as long as the vector
(E(vr|Pr) −W 0

r , E(vc|Pc) −W 0
c ) is on the line segment connecting W 0 = (W 0

r , W
0
c ) and

the middle point of the long edge of the triangle formed by W 0, v1, and v2, as depicted
in the right side of Figure 2:

E(vc|Pc) −W 0
c

E(vr|Pr)−W 0
r

=
ṽc −W 0

c

ṽr −W 0
r

(4.12)

where

ṽ =
v1 + v2

2
.

To ensure (4.12), it is not necessary that ν has a full support over V . In particular, it
is not necessary that (E(vr|Pr), E(vc|Pc)) converges to the centroid of the triangle Δ(W 0)
formed by W 0, v1 and v2, as βδ → 1.

We can relax Assumption 2.1. The crucial part of Assumption 2.1 is that ν assigns
strictly positive but finite density around the neighborhood of the Pareto frontier of V .
Let P be the Pareto frontier of V . Define ∀ε > 0

Pε = {v ∈ V | ∃v′ ∈ P, ‖v − v′‖ < ε}
as the ε neighborhood of the Pareto frontier of V , and fν(v|Pε) be the density function of
ν conditioned on Pε.

Suppose that ∃L, L so that

0 < L ≤ L <∞(4.13)

and

L ≤ lim inf
ε→0

inf
v∈Pε

fν(v|Pε) ≤ lim sup
ε→0

sup
v∈Pε

fν(v|Pε) ≤ L.(4.14)

If ν is concentrated on the Pareto frontier but has a continuous density function fν

conditioned on the Pareto frontier, then (E(vr|Pr), E(vc|Pc)) is located at the middle point
of the line segment connecting v1 and v2, not coinciding with the centroid of the triangle
Δ(W 0). Yet, we obtain (4.12) to prove Proposition 3.5.

It is crucial that we have a positive L and a finite L, as the example in the next section
shows. As long as (4.13) holds, the search process is sufficiently dispersed over the Pareto
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frontier. If L = 0 or L = ∞, then we essentially admit a search process, which excludes a
priori some outcomes or concentrates at a particular outcome in the Pareto frontier.

4.2. ν with an atom. If the search for a pair of agreeable outcomes (vr, vc) is concen-
trated on a particular outcome with a positive probability, then we may have an equilib-
rium outcome different from the Nash bargaining solution. The next proposition shows
that given ν which is concentrated at x∗∗ on the Pareto frontier of V , we can construct a
stationary undominated equilibrium whose long run average payoff converges to x∗∗ in the
limit as βδ → 1. One can follow the logic of the proof of Proposition 4.1 to show that there
is ν, which is concentrated at a finite number of points {x1, . . . , xK} on the Pareto frontier
of V for some K < ∞, such that we can construct a stationary undominated equilibrium
whose long run average payoff vector is distributed over {x1, . . . , xK} according to ν.

Proposition 4.1. Given V , suppose that we allow ν to have a mass point. Take any
Pareto efficient outcome x∗∗. Then for all ζ > 0, there exist a measure ν on V , β̄ < 1 and
δ < 1 such that for all β ∈ (β̄, 1) and δ ∈ (δ, 1), there exists W 0 such that ‖W 0−x∗∗‖ < ζ,
and W 0 is sustained as a stationary undominated equilibrium outcome.

Proof. See Appendix C. ��

Note that even in this case, the Nash bargaining solution is an undominated equilibrium
outcome in the limit of β and δ converging to one. In other words, if there is a mass
point on the Pareto frontier other than the Nash bargaining solution, there are multiple
undominated equilibrium outcomes in the limit.

Note also that even if there is a mass point in the interior of V , this mass point cannot
be a stationary undominated equilibrium outcome in the limit of βδ going to one. In other
words, even with mass points of ν in the interior of V , the set of undominated equilibrium
outcomes is contained in the set of Pareto efficient outcomes in the limit.

4.3. The case of fixed β and δ. If we assume a particular form of V and ν, we can
sometimes compute the equilibrium outcome, taking β and δ given. This subsection
demonstrates that we may have an asymmetric outcome, i.e., the outcome that is not on
the line segment connecting the disagreement point and the Nash bargaining solution.

Suppose, as an example, that v0 = (0, 0), V is a simplex, i.e., it is given by

V = {v = (vr, vc) ∈ R
2| vr, vc ≥ 0, vr + vc ≤ 1, vr ≤ 1/2}.

To make the example tractable, let us assume that ν is distributed uniformly only on the
(strong) Pareto frontier as discussed in the previous subsection.

Our equilibrium condition (3.8) remains the same9, and we have the following condition:

(1 − βδ)W 0 = βpW 0 [
E[v|P ]−W 0

]
.

9To be precise, there are many other equilibrium thresholds for the column agent since any threshold
below 1/2 is the same as 1/2 as they are not in the support, which does not happen in our original model
due to the full support assumption.
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It is verified that both W 0
r and W 0

c are less than or equal to 1/2. Given W 0 = (W 0
r , W

0
c ) ≤

(1/2, 1/2), E[v|P ] is computed as

E[v|P ] =
(

1
4

+
1
2
W 0

r ,
3
4
− 1

2
W 0

r

)
,

and pW 0
is given by

pW 0
= 1 − 2W 0

r .

After tedious calculation, we obtain

W 0
r =

1
2

(
1 +

1
β
− δ

)
− 1

2

√(
1 +

1
β
− δ

)2

− 1,

and

W 0
c =

1
2

(
1 − 1

β
+ δ

)
+

1
2

1/β − δ

2 + 1/β − δ

√(
1 +

1
β
− δ

)2

− 1.

It is verified that W 0
r < W 0

c , while limβδ→1(W 0
r , W

0
c ) = (1/2, 1/2).

4.4. n-types model with unanimity. We can extend our analysis in a straightforward
manner to a society consisting of n types of equally populated agents. Suppose that n
agents, one from each type, are asked whether or not to form a long term relationship on
a unanimity basis. They form the relationship if and only if all of n matched agents agree
to do so; otherwise, they all return to their respective pools. Then we can invoke our
main analysis to show that in the limit of β and δ converging to one, any undominated
equilibrium outcome converges to the n-person Nash bargaining solution, i.e., the outcome
vN given by

vN = (vN
1 , . . . , v

N
n ) = arg max

v=(v1,... ,vn)∈V,v>v0
(v1 − v0

1) · · · (vn − v0
n).

4.5. V is not convex. While we model the selection of an agreeable outcome as a bar-
gaining problem 〈V, v0〉, in which V is usually assumed to be convex, our analysis applies
even if V is not convex. To simplify exposition, let us assume that V has a differentiable
Pareto frontier.

Definition 4.2. (vr, vc) along the Pareto frontier of V is locally extremal if

dvc

dvr
=
vc − v0

c

vr − v0
r

so that the slope of the Pareto frontier coincides with the slope of the contour of the Nash
product

(vr − v0
r)(vc − v0

c )

at (vr, vc) ∈ V .

Our analysis shows that any locally extremal points along the Pareto frontier of V can
be approximated by an undominated equilibrium.
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Proposition 4.3. Fix a locally extremal point v∗ along the Pareto frontier of V . Then,
as βn → 1 and δn → 1, there exists a sequence of stationary undominated equilibria with
equilibrium value functions W 0

n = (W 0
r,n, W

0
c,n) such that W 0

n → v∗.

If V is convex, then any locally extremal point must be the Nash bargaining solution.
If V is not convex, however, some locally extremal point v∗ can be a local minimizer of
the Nash product over a small neighborhood of the Pareto frontier of v∗. However, if
v∗ is a local minimizer of the Nash product over the Pareto frontier of V , then one can
argue that the convergence is not stable in the sense that if one deviates slightly from
the proposed sequence of value functions, the perturbed sequence does not converge to
the local minimizer v∗. This observation indicates that we need some sort of selection
mechanism over the set of undominated stationary equilibria.

4.6. Axioms of Nash. Nash bargaining solution is completely characterized by four ax-
ioms: Invariance (INV), Symmetry (SYM), Pareto (PAR) and Independence of Irrelevant
Alternatives (IIA). It is instructive to see that an undominated equilibrium in our model
recovers each of four axioms in the limit of βδ going to one.10

INV requires that a solution of a bargaining problem 〈V, v0〉 should not be affected by
positive affine translation of the utility. In any undominated equilibrium, the decision rule
for a representative row player to agree to form a partnership conditioned on (vr, vc) is a
threshold rule: agree if vr > W 0

r and disagree if vr < W 0
r . Since the equilibrium decision

rule is invariant with respect to affine transformation of the utility, any undominated
equilibrium outcome is also invariant to affine transformation.

SYM states that a solution should be symmetric if the bargaining problem is symmetric.
If 〈V, v0〉 is symmetric, then we know any undominated equilibrium outcome must converge
to an egalitarian outcome in which both a row and a column player receives the same
expected long run average payoff. PAR, which requires that a solution from a bargaining
problem must be efficient, is implied by Lemma 3.4.

IIA states that if ṽ is a solution from a bargaining problem 〈Ṽ , v0〉, and ṽ ∈ V ⊂ Ṽ , then
ṽ must be a solution of 〈V, v0〉. Let v∗ be the limit point of a sequence of undominated
equilibrium outcomes as βδ converges to one. Given a pair of value functions (W 0

r , W
0
c )

in a small neighborhood of v∗ ∈ Ṽ , consider

{(vr, vc)|vr ≥W 0
r , vc ≥W 0

c }.(4.15)

Suppose that v∗ ∈ V ⊂ Ṽ . If the probability distribution over (4.15) in V is identical with
the probability distribution over (4.15) in Ṽ , then the set of undominated equilibria for
bargaining problem 〈Ṽ , v0〉 coincides with that for 〈V, v0〉.

For the sake of simplicity, suppose that both V and Ṽ have smooth Pareto frontiers,
as depicted in Figure 3. Since v∗ is on the Pareto frontier of Ṽ , and v∗ ∈ V , the Pareto
frontier of V is approximately the same as that of Ṽ in the neighborhood of v∗. Moreover,
the slopes of the Pareto frontiers at v∗ are the same for both V and Ṽ .

Given (W 0
r , W

0
c ), the solution of (3.7) is completely determined by the probability

distribution over

{(vr, vc) ∈ Ṽ |vr ≥W 0
r , vc ≥W 0

c }
10We are grateful for Stephen Lauermann for making this observation. See also Lauermann (2010).
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v∗

Pareto frontier of V

Pareto frontier of Ṽ

Figure 3. If V and Ṽ have smooth Pareto frontiers, then the two frontiers must
tangent at v∗.

and the disagreement point. Since v∗ is on the Pareto frontiers of V and Ṽ , if (W 0
r , W

0
c )

solves (3.7) over a small neighborhood of v∗ ∈ Ṽ , then it must solve the same equation over
a small neighborhood of v∗ ∈ V . Thus, any undominated equilibrium outcome satisfies
IIA in the limit of βδ going to one.

4.7. Different discount factors and generalized Nash bargaining solution. If row
and column agents have different discount factors, βr and βc, respectively, then our result
is modified so that a generalized Nash bargaining solution emerges as a unique equilibrium
outcome in the limit of βr, βc, and δ converging to one. We can write for some br, bc, d > 0,

βr = e−Δbr , βc = e−Δbc , and δ = e−Δd

where Δ > 0 is the time between the two rounds. We can interpret br and bc as the
interest rates, and d as the intensity with which the exogenous shock arrives according to
a Poisson process. Define

λ = lim
Δ→0

1 − βcδ

1− βrδ
=
bc + d

br + d
.

Repeating a similar computation as we did for (3.8), we obtain

[1 − βrδ, 1 − βcδ]
[
v0
r −W 0

r

v0
c −W 0

c

]
+ pW 0

[βr, βc]
[
E(vr|Pr) −W 0

r

E(vc|Pc) −W 0
c

]
= 0.(4.16)

Then, we have

λ
v0
c −W 0

c

v0
r −W 0

r

=
E(vc|Pc) −W 0

c

E(vr|Pr) −W 0
r

in the limit. Following the argument of the main analysis, we conclude that (W 0
r , W

0
c )

converges to (vλ
r , v

λ
c ) in the limit where we have

(vλ
r , v

λ
c ) = arg max

v=(vr ,vc)∈V,v>0
(vr − v0

r)
1

1+λ (vc − v0
c )

λ
1+λ

which is the generalized Nash bargaining solution.
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4.8. Two-person model. In order to better understand the informational and institu-
tional assumptions of our paper, let us consider the following two-person bargaining model
with perfect monitoring. Two agents meet everyday until they reach an agreement. Upon
agreement, they leave the market permanently. When they meet in time t, a payoff vector
v in V arises according to ν. Let Assumption 2.1 hold. After observing the proposed
payoff pair, they simultaneously choose to agree or disagree to v. If they both agree to v,
they obtain it and leave. If not, they continue to the next period while obtaining v0.

In this environment with perfect monitoring, we can have a result similar to the folk
theorem.

Proposition 4.4. Let int(V ) be the interior of V . In the two-person model with perfect
monitoring, take any v = (vr, vc) ∈ int(V ) with vr > v0

r and vc > v0
c and any β < 1. Then

there is an equilibrium in which the expected payoff vector upon agreement is v.

Proof. See Appendix F. ��
Since the two parties must stay together until the two parties reach an agreement, one

party can punish the other party in the future after observing a deviation by the other
party. We use a non-threshold strategy to construct an equilibrium with credible punish-
ments. Moreover, the constructed perfect equilibrium induces a strict Nash equilibrium
following every history so that the perfect equilibrium is an undominated equilibrium.

In our main model with a continuum of agents, each party returns to the pool of singles
if at least one party rejects the proposed payoff vector. The probability that the same
agents are matched in the future is 0. This feature of our model, combined with the
absence of a public information aggregation process, makes it impossible to implement
punishments against the other party who deviates from the equilibrium strategy.

The two-person model is sensitive to seemingly minor changes in the setup. For example,
Wilson (2001) constructed a model where two agents sequentially choose to agree or not
to the proposed payoff and computed a unique perfect equilibrium which is “isomorphic”
to the equilibrium focused on in the present paper with δ = 1.11 On the other hand, the
result in a societal model is very much independent of the choice of particular bargaining
protocol, as long as the search process for an agreeable outcome is sufficiently dispersed,
as formalized by Assumption 2.1.

11After completing the main proof, we became aware of Wilson (2001) cited in Compte and Jehiel
(2004). We are grateful for Mehmet Ekmekci and Mihai Manea for the references.
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Appendix A. Proof of Proposition 3.3

Choose v > 0 sufficiently large so that ∀(vr, vc) ∈ V , vr < v and vc < v. Clearly, v0
i < v

∀i ∈ {r, c}.
Lemma A.1. Given W 0

c , there exists a unique W 0
r satisfying (3.8).

Proof. Fix W 0
c , and define

ϕr(wr) =
(1 − βδ)v0

r + βpW 0
E[vr|Pr]

1 − βδ + βpw0 − wr.

The first term is a convex combination of v0
r and E[vr|Pr]. In particular, if wr = v0

r , then
E[vr|Pr] ≥ v0

r . Thus,

ϕr(v0
r) ≥ 0.

On the other hand, if wr = v, then pW 0
= 0, since there is no v ∈ V such that vr ≥ v and

vc ≥W 0
c simultaneously. Thus,

ϕr(v) < 0.

Since ϕr(wr) is a continuous function of wr, ∃W 0
r satisfying (3.8). A straightforward

calculation shows that ϕ(wr) is a strictly increasing function at wr = W 0
r as long as

pW 0
> 0. Hence, if pW 0

> 0, there can be at most one solution for (3.8). If pW 0
= 0, then

W 0
r = v0

r is the only solution for (3.8). ��
Consider a function over V , which maps (wr, wc) to the unique solution (w′

r, w
′
c) which

solves

(ϕr(w′
r), ϕc(w′

c)) = (0, 0).

Since this function is continuous over V which is convex and compact, we have a pair of
(wr, wc) satisfying

(ϕr(wr), ϕc(wc)) = (0, 0).

This fixed point is the pair of value functions with the desired properties.

Appendix B. Proof of Proposition 3.5

We have shown that in any stationary undominated equilibrium, a row agent accepts
vr if vr > W 0

r . Therefore, the equilibrium threshold is W 0
r , which solves the Bellman

equation and therefore, satisfies

W 0
r =

(1 − βδ)v0
r + βpW 0

E[vr|Pr]
1 − βδ + βpW 0 .(B.17)

Similarly, the threshold for a column agent is

W 0
c =

(1 − βδ)v0
c + βpW 0

E[vc|Pc]
1 − βδ + βpW 0 .(B.18)

Note first that as β and δ go to one, W 0
r and W 0

c converge to E[vr|Pr] and E[vc|Pc],
respectively. But this is impossible unless W 0 = (W 0

r , W
0
c ) converges to a Pareto efficient

outcome.



22 IN-KOO CHO AND AKIHIKO MATSUI

We know

(1 − βδ)
[
v0
r −W 0

r

v0
c −W 0

c

]
+ βpW 0

[
E(vr|Pr) −W 0

r

E(vc|Pc) −W 0
c

]
= 0

which implies

v0
c −W 0

c

v0
r −W 0

r

=
E(vc|Pc)−W 0

c

E(vr|Pr) −W 0
r

.(B.19)

W 0 = (W 0
r , W

0
c ) v2 = (V r(W 0

c ), W 0
c )

VW 0 = {v ∈ V |v ≥W 0}
Δ(W 0) is the triangle formed by W 0, v1 and v2

Pareto frontier of V

v1 = (W 0
r , ·)

�
(dvr, dvc)

ṽ = v1+v2

2

(E(vr|Pr, VW 0), E(vc|Pc, VW 0))

Figure 4. VW0 is a proper subset of Δ(W 0) when the Pareto frontier is not a
straight line, and W 0 is above the line segment connecting the disagreement point
v0 and the Nash bargaining solution vN . Note that (E(vr|Pr, VW0 ),E(vc|Pc, VW0 ))
is located below the line segment connecting W 0 and ṽ.

Given W 0, consider a right triangle Δ(W 0) with the right angle at W 0 as depicted in
Figure 5. We only describe the construction of Δ(W 0) for the case where W 0 is “above”
the line segment connecting v0 and vN . The construction for the remaining case where
W 0 is “below” the same line segment follows the symmetric logic.

The following notation will be used. Given v = (vr, vc), let

V r(v) = sup{v′r|(v′r, vc) ∈ V } and V c(v) = sup{v′c|(vr, v
′
c) ∈ V }.

Define

v2 = (V r(W 0), W 0
c )

as the point at the Pareto frontier where the row agent can get the maximum while keeping
the column agent’s payoff at W 0

c . Consider the hyperplane at v2 which separates v2 from
V . If the Pareto frontier of V is differentiable at v2, there is a unique hyperplane with an
outer norm (dvr, dvc) at v2. If the Pareto frontier of V is not differentiable, the convexity
of V implies that there exist more than a single separating hyperplanes separating v2
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from V . In such a case, we choose the separating hyperplane with the largest dvc/dvr (or
the “flattest” hyperplane). Since v2 is located on the Pareto frontier, dvc/dvr is strictly
positive, but finite. We choose a point v1 on the selected separating hyperplane in which
the row agent’s payoff is W 0

r . Let Δ(W 0) be the right triangle formed by the convex hull
of W 0, v2 and v1.

If V is a triangle, then the long edge of Δ(W 0) is embedded in the Pareto frontier of
V . In general, however,

VW 0 = {(vr, vc) ∈ V |vr ≥W 0
r , vc ≥W 0

c } ⊂ Δ(W 0).

The gap between the two sets is determined by the curvature of the Pareto frontier.
Define ρ as the distance between W 0 and the Pareto frontier of V . Let us partition

Δ(W 0) into two smaller triangle. Define ṽ = (ṽr, ṽc) as the middle point of v1 and v2:

ṽ =
v1 + v2

2
.

Let us assume for a moment that ν is uniform, but V is convex so that VW 0 can be
a proper subset of Δ(W 0). Suppose that Δ(W 0) is endowed with the uniform distribu-
tion. Let fν,r(vr|Δ(W 0)) and fν,c(vc|Δ(W 0)) be the marginal distributions of vr and vc

conditioned on Δ(W 0), respectively. Then, consider a new pair of marginal distributions
fν,r(vr|VW 0) and fν,c(vc|VW 0) conditioned on VW 0.

Since the Pareto frontier is convex, fν,r(vr|VW 0) stochastically dominates fν,r(vr|Δ(W 0)),
while fν,c(vc|Δ(W 0)) stochastically dominates fν,c(vc|VW 0). Therefore,

E(vc|Pc, VW 0) −W 0
c

E(vr|Pr, VW 0) −W 0
r

≤ E(vc|Pc,Δ(W 0)) −W 0
c

E(vr|Pr,Δ(W 0)) −W 0
r

.(B.20)

The desired conclusion follows from the observation that

E(vc|Pc,Δ(W 0)) −W 0
c

E(vr|Pr,Δ(W 0)) −W 0
r

<
W 0

c − v0
c

W 0
r − v0

r

whenever W 0 is above the line segment connecting v0 and vN .
From the analysis of the case where V is triangle, and fν satisfies Assumption 2.1,

we know that if βδ < 1 is sufficiently close to 1, we can approximate fν by the uniform
distribution over

VW 0 = {(vr, vc)|vr ≥W 0
r , vc ≥W 0

c }.
Moreover, since V is convex, (B.20) implies that (B.17) and (B.18) can solve only if W 0 is
located in the small neighborhood of the line segment connecting disagreement point v0

and the Nash bargaining solution vN :

W 0
c − v0

c

W 0
r − v0

r

=
W 0

c − vN
c

W 0
r − vN

r

.

Since (B.17) and (B.18) have a solution, the proof of the proposition is complete.
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Appendix C. Proof of Proposition 4.1

The key idea is to construct ν in such a way that the selected outcome is sustained
by a stationary undominated equilibrium. Choose an arbitrary Pareto efficient outcome
x∗∗ = (x∗∗r , x∗∗c ) in V . Fix ζ > 0. Then construct a measure ν on V in such a way that
there is a mass at x∗∗ with a uniform density everywhere else on V .

We would like to construct a stationary undominated equilibrium where the threshold
pairW 0 is in the ζ-neighborhood of x∗∗. The equilibrium conditions are given by ψr(W 0) =
W 0

r and ψc(W 0) = W 0
c where

ψr(W 0) =
1 − βδ

1 − βδ + βpW 0 v
0
r +

βpW 0

1 − βδ + βpW 0 E[vr|v ≥W 0],(C.21)

and

ψc(W 0) =
1 − βδ

1 − βδ + βpW 0 v
0
c +

βpW 0

1 − βδ + βpW 0 E[vc|v ≥W 0].(C.22)

If W 0 ≤ x∗∗, then (C.21) and (C.22) are rewritten as

ψr(W 0) =
1− βδ

1− βδ + βpW 0 v
0
r +

βν({x∗∗})
1 − βδ + βpW 0 x

∗∗
r(C.23)

+
βν({v|v ≥W 0, v �= x∗∗}

1 − βδ + βpW 0 E[vr|v ≥W 0, v �= x∗∗],

and

ψc(W 0) =
1− βδ

1− βδ + βpW 0 v
0
c +

βν({x∗∗})
1 − βδ + βpW 0 x

∗∗
c(C.24)

+
βν({v|v ≥W 0, v �= x∗∗}

1 − βδ + βpW 0 E[vc|v ≥W 0, v �= x∗∗],

respectively. Note that ψr and ψc are continuous on V ∩ (−∞, x∗∗r ) × (−∞, x∗∗c ).
If β and δ are close to one, the second term dominates the first term in both (C.23) and

(C.24) so that ψ(W 0) is in the ζ-neighborhood of x∗∗. Take such β and δ.
Construct a square Sη = [x∗∗r − ηr, x

∗∗
r ] × [x∗∗c − ηc, x

∗∗
c ] in the following manner. See

(C.23) and (C.24) and consider W 0
r = x∗∗r . On this line, the third term becomes negligible

compared to the first and second terms, while the second term still dominates the first
term as W 0

c converges to x∗∗c . Therefore, one can find ηc such that

ψr(x∗∗r , x
∗∗
c − ηc) ≤ x∗∗r ,

ψc(x∗∗r , x
∗∗
c − ηc) > x∗∗c − ηc.

Similarly, one can find ηr such that

ψr(x∗∗r − ηr, x
∗∗
c ) > x∗∗r − ηr,

ψc(x∗∗r − ηr, x
∗∗
c ) ≤ x∗∗c .

Using the fact that as W 0 converges to x∗∗, the third term is monotonically decreasing,
while the first term is monotonically increasing, we can verify that for all x on the line



A SOCIAL FOUNDATION OF NASH BARGAINING SOLUTION 25

segment connecting (x∗∗r , x∗∗c − ηc) and x∗∗, i.e., for all x ∈ {x∗∗r } × [x∗∗c − ηc, x
∗∗
c ],

ψ(x) ≤ x∗∗r

holds. Similarly, it is verified that for all y on the line segment connecting (x∗∗r − ηr, x
∗∗
c )

and x∗∗,
ψ(y) ≤ x∗∗c

holds. Also, since the second term still dominates the first term, for all x on the line
segment connecting (x∗∗r − ηr, x

∗∗
c − ηc) and (x∗∗r − ηr, x

∗∗
c ),

ψ(x) > x∗∗r − ηr

holds, and for all y on the line segment connecting (x∗∗r − ηr, x
∗∗
c − ηc) and (x∗∗r , x∗∗c − ηc),

ψ(y) > x∗∗c − ηc

holds. We thus verified that the boundary of Sη is mapped into Sη.
Next, we look at the interior of Sη. It is verified that ψr(x∗∗r , xc) ≤ x∗∗r implies

ψr(xr, xc) ≤ x∗∗r for all xr < x∗∗r since we have

ψr(xr, xc) =
1− βδ + βp(x∗∗

r ,xc)

1 − βδ + βp(xr,xc)
ψr(x∗∗r , xc)

+
βν({v|vc ≥ xc, xr < vr < x∗∗r }

1 − βδ + βp(xr,xc)
E[vr|vc ≥ xc, xr < vr < x∗∗r ].

Using a similar argument, we can verify that ψc(xr, x
∗∗
c ) ≤ x∗∗c implies ψc(xr, xc) ≤ x∗∗c

for all xc < x∗∗c , that ψr(x∗∗r − ηr, xc) ≥ x∗∗r − ηr implies ψr(xr, xc) ≥ x∗∗r for all xr ∈
(x∗∗r − ηr, x

∗∗
r ), and that ψc(xr, x

∗∗
c − ηc) ≥ x∗∗c − ηc implies ψc(xr, xc) ≥ x∗∗c − ηc for all

xc ∈ (x∗∗c − ηc, x
∗∗
c ).

Summarizing all the above observations, it is verified that for all W ∈ Sη, ψ(W ) ∈ Sη

holds. By Brouwer’s fixed point theorem, there exists W 0 such that ψ(W 0) = W 0. This
W 0 gives the equilibrium threshold pair.

Appendix D. Proof of Lemma 3.6

Since any pair of equilibrium value functions is uniformly bounded, W is uniformly
bounded. Since the equilibrium correspondence is upper hemi-continuous, W is closed.
Since the collection of all bounded functions over a compact set is a separable space, W
is compact.

Appendix E. Proof of Proposition 3.9

Note that W can be written as a convex combination of today’s payoff and the future
value function. Since W is an extreme point of co(W), the future value function must be
W . Thus,

Wi(v) = (1 − β)vi + β((1 − δ)W 0
i + βWi(v)) ∀i = r, c.(E.25)
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Pareto frontier

x∗∗

v0

W 0

(x∗∗r − ηr, x
∗∗
c − ηc)

�

	
ψ




�

Figure 5. A mass on x∗∗

Note that W 0
i and Wi(v) in the right hand side are the value functions in the next period,

which must be equal to the value function of today, because W is an extreme point. The
optimality of the decision rule requires

Wi(v) > W 0
i ⇒ A, and Wi(v) < W 0

i ⇒ R, ∀i = r, c

which is equivalent to

vi > W 0
i ⇒ A, and vi < W 0

i ⇒ R, ∀i = r, c.(E.26)

Since W is an extreme point, the threshold must be stationary. Moreover, each agent
makes a decision, conditioned only on his own one period payoff in (vr, vc), even if he can
observe the other agent’s payoff. Given this pair of threshold rule, we have

W 0
i (v) = (1 − β)v0

i + β((1 − pW 0
)W 0

i + pW 0
E(Wi(v)|Pi)) ∀i = r, c

where pW 0
is defined as in (3.6). Since the threshold is stationary, the equilibrium strategy

must be stationary, whose pair of value functions is W .

Appendix F. Proof of Proposition 4.4

For the sake of simplicity, assume fν is constant on V and v0
r = v0

c = 0. Take v and β
as stated in the proposition. Then take ε > 0 so as to satisfy

vr − ε > βvr

vc − ε > βvc.
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Given ε > 0 and n = 0, 1, 2, . . . , construct a box Bn given by

Bn =
[
vr − 1

n + 1
ε, vr +

1
n+ 1

ε

]
×

[
vc − 1

n + 1
ε, vc +

1
n+ 1

ε

]
.

Let fi satisfy the following:

fi(hi,t, v) =

{
A if there are n deviations and v ∈ Bn,

R otherwise.
.

This states that on the equilibrium path, they agree if and only if v is in B0. If one agent
deviates, they punish the deviation by reducing the region of acceptance from B0 to B1.
If there is another deviation, reduce it from B1 to B2, and so forth. The expected payoff
upon agreement is always v. And it is verified that the agents have strict incentives to
follow the equilibrium strategies.



28 IN-KOO CHO AND AKIHIKO MATSUI

References

Burdett, K., and R. Wright (1998): “Two-Sided Search with Nontransferable Utility,” Review of
Economic Dynamics, 1, 220–245.

Compte, O., and P. Jehiel (2004): “Bargaining over Randomly Generated Offers: A new perspective
on multi-party bargaining,” CERAS-ENPC.

Fujiwara-Greve, T., and M. Okuno-Fujiwara (2009): “Voluntarily Separable Repeated Prisoner’s
Dilemma,” Review of Economic Studies, 76, 993–1021.

Ghosh, P., and D. Ray (1996): “Cooperation in Community Interaction without Information Flows,”
Review of Economic Studies, 63, 491–519.

Gilboa, I., and A. Matsui (1992): “A Model of Random Matching,” Journal of Mathematical Economics,
21, 185–197.

Harsanyi, J. C. (1956): “Approaches to the Bargaining Problem Before and After the Theory of Games:
A Critical Discussion of Zeuthen’s, Hicks’, and Nash’s Theories,” Econometrica, 24, 144–157.

Judd, K. L. (1985): “The Law of Large Numbers with a Continuum of IID Random Variables,” Journal
of Economic Theory, 35(1), 19–25.

Kreps, D. M. (1990): A Course in Microeconomic Theory. Harvester Wheatsheaf.
Lauermann, S. (2010): “Dynamic Matching and Bargaining Games: A General Approach,” mimeo.
Mortensen, D. T., and C. A. Pissarides (1994): “Job Creation and Job Destruction in the Theory of
Unemployment,” Review of Economic Studies, 208, 397–415.

Nash, J. F. (1950): “The Bargaining Problem,” Econometrica, 18(2), 155–162.
(1953): “Two Person Cooperative Games,” Econometrica, 21, 128–140.

Perry, M., and P. Reny (1993): “A Non-cooperative Bargaining Model with Strategically Timed
Offers,” Journal of Economic Theory, 59(1), 50–77.

Raiffa, H. (1982): The Art and Science of Negotiation. The Belknap Press of Harvard University Press.
Royden, H. (1988): Real Analysis. Prentice Hall, 3rd edn.
Rubinstein, A. (1982): “Perfect Equilibrium in a Bargaining Model,” Econometrica, 50(1), 97–110.
Rubinstein, A., and A. Wolinsky (1985): “Equilibrium in a Market with Sequential Bargaining,”
Econometrica, 53, 1133–1150.

St̊ahl, I. (1972): “Bargaining Theory,” Stockholm School of Economics.
Wilson, C. A. (2001): “Mediation and the Nash Bargaining Solution,” Review of Economic Design, 6,
353–370.

Young, P. (1993): “An Evolutionary Model of Bargaining,” Journal of Economic Theory, 59, 145–168.
Zeuthen, F. (1930): Problems of Monopoly and Economic Warfare. Augustus M. Kelley Publishers,
London.

Department of Economics, University of Illinois, 1206 S. 6th Street, Champaign, IL 61820

USA

E-mail address : inkoocho@uiuc.edu
URL: https://netfiles.uiuc.edu/inkoocho/www

Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,

Japan

E-mail address : amatsui@e.u-tokyo.ac.jp
URL: http://www.e.u-tokyo.ac.jp/~amatsui


