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Abstract

We examine alternating-move policy games where the government and
the private sector alternate their moves. In contrast with the standard
policy game, the set of equilibrium payoffs of the present model is
bounded away from the payoff under the one-shot Nash equilibrium,
called the Kydland-Prescott outcome, and the upper bound is close
to the payoff under the optimal policy (called the Ramsey policy) if
the government is sufficiently patient. In other words, the Kydland-
Prescott outcome is not time consistent, while the Ramsey outcome
could be approximated by a time-consistent policy of the same game.
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1 Introduction

In their seminal paper, Kydland and Prescott (1977) articulated the funda-
mental problem in implementing the optimal policy when the government
does not have credible technology of commitment, and the private sector
has a rational expectation about the government’s policy. If the private
sector responds optimally to the government’s announcement of its optimal
policy, then the government has an incentive to change it: the government’s
optimal policy may not be time consistent. To be time consistent, the policy
must be a best response to the private sector’s reaction, which, in turn, is
a best response to the government’s policy. This outcome, often called the
Kydland-Prescott (KP) outcome, is Pareto inferior to the outcome under
the optimal policy, which maximizes the objective function of the govern-
ment behaving as the Stackelberg leader; this is also known as the Ramsey
outcome.

The KP outcome is stable under a recursive learning dynamics, while
the socially optimal outcome is not. Marcet and Sargent (1989) constructed
a simple recursive algorithm in which the government learns the private sec-
tor’s behavior by using the least square algorithm and demonstrated that the
KP outcome is the only stable outcome of such a learning process. Even if
the government initially implements the optimal policy, its policy converges
to the suboptimal KP outcome as it learns more about the private sector’s
response. The stability result of Marcet and Sargent (1989) suggests that
the policy will remain suboptimal with a high probability.

We believe that the reality of the policy is not so pessimistic as one
might infer from Kydland and Prescott (1977) for three reasons. First, the
history of government policy reveals that the government does not always
pursue the suboptimal policy (cf. Sargent (1999)). If it has to estimate
the response of the private sector recursively, then the resulting outcomes
may not stay around the KP outcome. Rather, government policy exhibits
a cyclical behavior that oscillates between the optimal policy and the KP
outcome. As a result, the government’s policy outcome Pareto dominates
the KP outcome (Cho, Williams, and Sargent (2002)) in terms of the long
run average social welfare.1 Second, recent experiments by Arifovic and
Sargent (1999) strongly indicate that the Ramsey outcome instead of the
KP outcome appears to be the focal point of the subjects in the experiments,
who move toward the Ramsey policy rather quickly. The third, and the most
important, reason is that the Ramsey outcome seems far more intuitive than

1See also Sims (1988) and Chung (1990).
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the KP outcome. If the government’s objective function is to maximize
social welfare, and if the Ramsey policy is a feasible solution, then it is
reasonable to expect the government to make every effort to move away
from the suboptimal KP outcome (Blinder (1999)).

To support our intuition and observations, it is necessary for the Ramsey
policy to be time consistent so that the government’s announcement of the
optimal policy to be credible. But, it is equally important that we should
have a sensible criterion to remove the suboptimal KP outcome from the set
of solutions.

By modeling the problem as a repeated game between the government
and the private sector, which consists of a continuum of infinitesimal agents,
Chari and Kehoe (1990) and Stokey (1991) demonstrated that the Ramsey
outcome can be sustained by a subgame perfect equilibrium. By the def-
inition of subgame perfection, the government’s announcement is credible
following every history because the policy and the private sector’s response
constitute a Nash equilibrium in any continuation game. However, Chari
and Kehoe (1990) and Stokey (1991) did not offer a criterion to eliminate the
suboptimal KP outcome, which is also sustained by a subgame perfect equi-
librium. In fact, following the idea of the folk theorem in the repeated game,
we can sustain every possible payoff vector between the Ramsey outcome
and the KP outcome. In the end, the pessimism of Kydland and Prescott
(1977) was replaced by the multiplicity of equilibria, as Sargent (1999) put
it.

In our earlier paper (Cho and Matsui (1995)), we examined a dynamic
policy game in which the private sector is boundedly rational in the sense
that its forecasting rule must confirm the induction principle,2 and the gov-
ernment is infinitely patient. By carefully restricting the set of feasible
strategies of the private sector, Cho and Matsui (1995) demonstrated that
any Nash equilibrium outcome of the repeated policy game must be in a
small neighborhood of the Ramsey outcome: we achieved the credibility of
the Ramsey outcome while eliminating the suboptimal KP outcome. Yet,
this approach, like most models with bounded rationality, requires ad hoc,
albeit intuitive, restrictions on the strategies.

The present paper continues the research initiated in Cho and Matsui
(1995). However, instead of boundedly rational agents investigated therein,
fully rational agents are considered in this paper. In contrast with the studies

2Roughly speaking, the forecasting scheme of the private sector satisfies the induc-
tion principle, if after observing the same y many times, the private sector’s forecast is
concentrated at the small neighborhood of y.
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mentioned earlier, in which the government and the private sector choose
their actions simultaneously, we assume that each party chooses its action
in an alternating manner as in Maskin and Tirole (1988) and Lagunoff and
Matsui (1997): in every odd numbered period, the government sets its policy
and in every even numbered period, the private sector chooses its response
to the government’s policy.3

By the definition of the repeated game, each component game, regard-
less of whether it is a normal form game (Stokey (1991)) or an extensive
form game (Chari and Kehoe (1990)), is an independent game which has no
physical link to the game played in the past: in every period, the players
are facing the same rule of the game and the same set of choices. One way
of creating linkage over time is to introduce reputation so that the past his-
tory can influences the strategic decision in the present round (Backus and
Driffill (1985) and Barro (1986)).4

Instead of reputation, we introduce the linkage between the two consec-
utive periods by modifying the rule of the game. That is, each party can
make a move not every period, but every other period. In particular, the
government can make a move in every odd numbered period and the private
sector moves in every even numbered period.

The alternating move game captures an important aspect of decision
making processes often suppressed in the standard policy models based on
the repeated games. For example, many important government policies like
a tax system and private sector’s actions such as investment require some
time to revise. Before the government’s decision is fully materialized, many
private agents, if not all, have opportunities to make investment decisions.
Similarly, the government makes the next move while the outcome of the
private sector’s investment decision has not been fully materialized.

Because of the technological constraint, the “component” game in each
period is linked in such a way that the payoff of one party is influenced by the
other party’s action taken in the previous round. Although the alternating
move game is not the most general form of payoff relevant linkage over time,
it is a canonical model to investigate whether or not the KP outcome is
robust against small changes of the timing of moves.

Moreover, the story of Kydland and Prescott (1977) is consistent with
a sequential decision-making process between the two parties: first, the
government chooses its policy, to which the private sector responds, then

3It is also noted that, in contrast with Cho and Matsui (1995), we assume that each
party’s discount factor is less than unity.

4See also the seminal work of Kreps, Milgrom, Roberts, and Wilson (1982) in the
standard repeated game setting.
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the government responds to the private sector’s action, and so on. We
can naturally examine the time consistency of the government’s policy by
examining its policy choice, which follows the response of the private sector.

The key difference of the alternating move policy game from the standard
simultaneous move repeated game is that each party must (and can) commit
to its action for two periods, because it can make a move only every two
periods. In each period, the state variable is the decision made by the
other party in the previous round. Since a decision must be carried over
two periods, each party now has to consider the impact of its decision in
response to the state variable (the previous action of the other party), and
on the next move by the other party.

In order to illuminate the difference between the standard repeated and
the alternating move policy games, we first analyze the two-by-two case that
captures the essence of the policy problem of Kydland and Prescott (1977)
and Stokey (1991). The difference in the set of subgame perfect equilibrium
outcomes is striking. In this simple policy model, we demonstrate that
the set of subgame perfect equilibrium outcomes must be bounded away
from the KP outcome, and under a certain set of parameter values, the
set of subgame perfect equilibrium payoffs of the government converges to
the Ramsey outcome payoff. That is, the KP outcome is no longer a time
consistent outcome of the alternating policy game, while all time consistent
policies must induce outcomes close to the Ramsey outcome.

Since the set of strategies for the alternating move games is complex, it
is difficult to completely characterize the set of subgame perfect equilibria.
Instead, we focus on Markov perfect equilibrium, which requires decisions to
be optimal under every “payoff relevant” state. By imposing perfection, we
can inject the time consistency property in every solution of the game. At the
same time, by the Markovian property, the strategy of each party depends
only upon the payoff-relevant portion of a history (i.e., the opponent’s action
in the previous round), which significantly simplifies the analysis and enables
us to completely characterize the set of equilibria.5

Since the private sector consists of a continuum of infinitesimal agents,
the strategic power of a single agent is negligible. This feature is natural in
the context of the policy game in which the government is facing a continuum
of small agents. If the same alternating move game is played between two
large players, then the folk theorem holds unless the interests of the two
players completely coincide (Lagunoff and Matsui (1997), Yoon (2001), and
Takahashi and Wen (2003)).

5See Maskin and Tirole (1988).
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To demonstrate that the key findings from the 2×2 games can be carried
over to a more complex policy game, we examine the game with a continuum
of actions, focusing on Markov perfect equilibria. We choose the model of
Lucas (1976) and Kydland and Prescott (1977).

We show that the set of Markov perfect equilibrium outcomes is bounded
away from the KP outcome if the government is patient. If the private
sector is completely impatient, we have the sharpest contrast between the
simultaneous move repeated game and the alternating move game. On one
hand, in Chari and Kehoe (1990) and Stokey (1991), the time preference
of a representative private agent has no influence on the set of subgame
perfect equilibrium outcomes. Even if one assumes that the private agent
is completely impatient, one can sustain virtually all outcomes between the
Ramsey and the KP outcome. On the other hand, in the alternating move
game, the set of Markov perfect equilibrium outcomes converges to the op-
timal policy outcome as the discount factor of the government converges to
unity. The Markov perfect equilibrium set not only eliminates the repetition
of the KP outcome, but also converges to the Ramsey outcome.

Since the KP outcome is the Nash equilibrium of the one-shot game, it
is straightforward to construct a Nash equilibrium in which the KP outcome
is played repeatedly for the alternating policy game. However, this equilib-
rium does not satisfy the perfection requirement because the government’s
strategy of sticking to the KP outcome is not optimal in some unreached
states. The requirement for perfection plays the same role as experiments.
Instead of actually carrying out experiments to find the optimal action in
every state, the perfection requirement forces the government and the pri-
vate sector to deduce the optimal response under every possible state, which
unravels the KP outcome.

In this setup, we characterize the bound of the steady states sustained by
Markov perfect equilibria, demonstrating that the lower bound of the steady
state payoffs sustained by Markov perfect equilibria is bounded away from
the KP outcome, while its upper bound is close to the optimal outcome.
This conclusion is consistent with our intuition that repeated interaction
should offer more opportunities for the government to improve its policy,
even if it does not always achieve the optimal one.

The rest of the paper is organized as follows. Section 2 defines alternat-
ing move games. Section 3 analyzes the two-by-two case which captures the
essence of the policy problem of Kydland and Prescott (1977) and Stokey
(1991). In this simple policy model, we demonstrate that the set of subgame
perfect equilibrium outcomes must be bounded away from the KP outcome,
and under a certain set of parameter values, the set of subgame perfect equi-
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librium outcomes converge to the Ramsey outcome payoff. We completely
characterize the set of Markov perfect equilibria. Section 4 analyzes a policy
model built upon Kydland and Prescott (1977) in which action spaces are
closed intervals. Although a complete characterization of the Markov perfect
equilibria is difficult, we show that the set of the Markov perfect equilibrium
payoffs is bounded from above by the payoff of the Ramsey outcome, but the
lower bound is strictly higher than the payoff of the KP outcome. Section 5
gives an example to show the structure of Markov perfect equilibria in which
the unique Markov perfect equilibrium payoff is equal to the lower bound
which we calculated in section 4. Combining the equilibrium outcome cal-
culated in section 3 and section 5, we conclude that the upper bound and
the lower bound calculated in section 4 are the least upper bound and the
greatest lower bound, respectively. Section 6 concludes the paper.

2 Alternating Move Policy Games

2.1 The Model

We examine infinite-horizon alternating move games between the govern-
ment and the private sector, which consists of a continuum of infinitesimal
agents. Let y ∈ Y be the policy variable of the government and x ∈ X be
the aggregate action of the private sector, where Y and X are the respective
action spaces of the two agents. Given an action profile (y, x), let u(y, x)
and v(y, x) be one-shot payoffs of the government and a representative agent,
respectively.6 We assume that the government’s actions and the aggregate
actions of the private sector are perfectly observable, but not the actions of
each private agent.

Let us consider a dynamic game where the government starts the game,
and moves in every odd-numbered period, while the private sector moves in
every even-numbered period. Figure 1 illustrates this process. In the first
period, the private sector’s action is exogenously given, denoted by x0.7 In
an odd period 2t + 1 (t = 0, 1, 2, . . . ), if the government takes y2t+1 and if
the private sector took x2t in the previous period, then the realized payoff

6The payoff function v of the private sector is a reduced form of a more precise notation,
v(y, x, x′) where the third term x′ is his own action, while x is the aggregate action. We do
not need this precise form in the subsequent analysis since only the representative agent’s
incentive will be examined. Of course, we treat the representative agent as a “price-taker”,
meaning that the agent does not take into account a response of the government to his
own deviation.

7The subsequent analysis will not change even if the first action x0 of the private sector
is a choice variable instead.

7



�time

1 2 3

y1 x2 y3

government’s
payoff
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action profile (y1, x0) (y1, x2) (y3, x2)

u(y1, x0) u(y1, x2) u(y3, x2)

private sector’s
payoff v(y1, x0) v(y1, x2) v(y3, x2)

Figure 1: The play of the game

of this period to the government (resp. the private sector) is u(y2t+1, x2t)
(resp. v(y2t+1, x2t)). Payoffs in even periods are similarly defined.

Given a sequence of actions ({y2t−1}∞t=1, {x2t}∞t=1), the government’s ob-
jective function at time 2T − 1 (T = 1, 2, ...) is given by

(1 − δg)
∞∑

t=T

δ2(t−T )
g [u(y2t−1, x2t−2) + δgu(y2t−1, x2t)] , (1)

while the private sector’s objective function at time 2T (T = 1, 2, ...) is

(1 − δp)
∞∑

t=T

δ2(t−T )
p [v(y2t−1, x2t) + δpv(y2t+1, x2t)] , (2)

where δg, δp ∈ (0, 1) are the discount factors of the government and the
private sector, respectively.

2.2 Equilibrium Concepts

We use two equilibrium concepts, subgame perfect equilibrium and Markov
perfect equilibrium. A subgame perfect equilibrium is defined to be a strat-
egy pair in which each player maximizes its own continuation value (either
(1) or (2)) after any history given others’ strategies. In order to reflect the
fact that the private sector consists of a continuum of infinitesimal anony-
mous agents, the private sector’s action x2t at time 2t is determined to be
the optimal response to y2t−1 and y2t+1. More precisely, we have

v(y2t−1, x2t) + δpv(y2t+1, x2t) ≥ v(y2t−1, x
′) + δpv(y2t+1, x

′)

8



for all x′.8 This is because a single private agent never affects the future
actions of the government.

In the sequel, we sometimes focus on a simple class of strategies where
each party’s action in each period is conditioned only on the payoff relevant
state of the history. In the alternating move game, the state for the gov-
ernment is the most recent action by the private sector, and similarly, the
government’s most recent action is the state for the private sector. By a
Markov strategy of the government, we mean a function r of the form:

r : X → Y.

Similarly, a Markov strategy of the private sector is

g : Y → X.

Given (r, g) and an initial state x ∈ X, the value function of the government
is written as

U(x) = max
y

[
(1 − δg)[u(y, x) + δgu(y, g(y))] + δ2

gU(g(y))
]
. (3)

Definition 2.1 By a Markov perfect equilibrium (MPE), we mean a pair
(r, g) of Markov strategies in which for all x ∈ X, r(x) is a solution to (3),
and for all y ∈ Y , g(y) satisfies

g(y) ∈ max
x

[v(y, x) + δpv(r(g(y)), x)] .

We shall admit mixed strategies for the both players. To simplify no-
tation, however, we shall use r and g to represent a mixed strategy of the
government and the private sector, respectively, whenever the meaning is
clear from the context. With mixed strategies, (3) becomes

EU(x) = max
r̂

∑
y

r̂(x)(y)

×
[
(1 − δg)u(y, x) + (1 − δg)δg

∑
x′

g(y)(x′)[u(y, x′) + EU(x′)]

]

where r̂(x)(y) is the probability (density) assigned to y by a mixed strategy
r̂(x), and similarly, g(y)(x) is the probability (density) assigned to x by g(y).
In this specification, a mixed strategy g of the private sector is interpreted
as the situation in which agents’ actions are correlated, using, say, sunspots.

8To be precise, this equilibrium is different from the standard definition of subgame
perfect equilibrium, modified so as to reflect the infinitesimality of the private agents.
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3 2 × 2 Policy Game

This section analyzes alternating move games with two actions for each
player. The games examined in this section essentially capture the nature
of the policy game of Kydland and Prescott (1977) and Stokey (1991). The
stage payoff is given by (4) where µ < 1.

Private
L R

Gov. C 3, 3 0, 0
D 4, µ 1, 1

(4)

Note that (C,L) corresponds to the Ramsey outcome, the best outcome if
the government can commit to its action, and (D,R) corresponds to the
Kydland-Prescott outcome, a one-shot Nash equilibrium if we regard (4) as
a one-shot game.

Let us now look at subgame perfect equilibria. Suppose µ > 1 − 3/δp.
Since we have

v(C,L) + δpv(D,L) = 3 + δpµ > δp = v(C,R) + δpv(D,R),

y2t−1 = C implies x2t = L. Therefore, even in the worst case, the govern-
ment can guarantee itself the payoff of 3 from the next period on by taking
C forever after. This leads to the following result, which is stated without
a proof.

Theorem 3.1 Suppose µ > −2. For any ε > 0, there exists δ̄g < 1 such that
δg > δ̄g implies that in any subgame perfect equilibrium, after any history,
the continuation value of the government is greater than 3 − ε.

An important point is that the set of equilibrium outcomes is bounded
away from the KP outcome, and every outcome in the set Pareto dominates
the KP outcome. It should be noted that there is a Nash equilibrium of
the alternating move game in which the government always plays D and
the private sector takes R following every history. By subgame perfection,
however, if the government’s policy is C, then the private sector must choose
L instead of R: the private sector’s action in state C is not subgame perfect.
If the government knows that the private sector will choose L in response
to C, it has an incentive to deviate to C from D. The repetition of the
KP outcome is not sustained by a subgame perfect equilibrium: it is not
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time consistent in the alternating move policy game, while all time consistent
outcomes generate the long run average payoff close to the Ramsey outcome.

Next, we focus on Markov perfect equilibria to completely characterize
the set of equilibrium outcomes. A Markov strategy of the government can
be expressed by a pair of mixed actions ((1− pL)[C] + pL[D], (1 − pR)[C] +
pR[D]), or simply (pL, pR), where pL (resp. pR) is the probability of the
government’s taking D when the private sector took L (resp. R) in the
previous period. Similarly, (qC , qD) is a Markov strategy of the private
sector where qC (resp. qD) is the probability of taking R if the government’s
previous action is C (resp. D).

There are eight states in this process, four pairs of actions with the
indication of the mover of the period. For example, by CL we mean the
state in which the government took C in the previous period, and the private
sector takes L in the present period. Let Vxy be the discounted average payoff
of the government when it takes y ∈ {C,D}, while the opponent’s previous
action is x ∈ {L,R}. On the other hand, we let Vyx be the discounted
average payoff to the government when the private sector takes x ∈ {L,R},
while the government’s previous action is y ∈ {C,D}.

Since Markov perfection requires that each party’s action be optimal
under every state, its state contingent choice can be represented as a solution
of the Bellman equation. Then, we have a rather long list of recursive
representations for a Markov strategy profile ((pL, pR), (qC , qD)). In the
remaining part of this section, we assume that the government and the
private sector have a common discount factor, i.e., δg = δp = δ.

VLC = (1 − δ)3 + δ [(1 − qC)VCL + qCVCR] ,
VLD = (1 − δ)4 + δ [(1 − qD)VDL + qDVDR] ,
VRC = (1 − δ) · 0 + δ [(1 − qC)VCL + qCVCR] ,
VRD = (1 − δ) + δ [(1 − qD)VDL + qDVDR] .

And similarly,

VCL = (1 − δ)3 + δ [(1 − pL)VLC + pLVLD] ,
VCR = (1 − δ) · 0 + δ [(1 − pR)VRC + pRVRD] ,
VDL = (1 − δ)4 + δ [(1 − pL)VLC + pLVLD] ,
VDR = (1 − δ) + δ [(1 − pR)VRC + pRVRD] .

For the private sector, we have different expressions for the value func-
tions. Each agent is infinitesimal and, therefore, does not unilaterally affect
the future outcome path except that the agent himself has to commit to an
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action for two periods. For this reason, we have the following eight expres-
sions.

ΠCL = 3 + δ [(1 − pL)3 + pLµ] ,
ΠDL = µ + δ [(1 − pL)3 + pLµ] ,
ΠCR = 0 + δ [(1 − pR) · 0 + pR · 1]

= δpR,

ΠDR = 1 + δ [(1 − pR) · 0 + pR · 1]
= 1 + δpR.

and

ΠCL\R = 0 + δ [(1 − pL) · 0 + pL · 1]
= δpL,

ΠDL\R = 1 + δ [(1 − pL) · 0 + pL · 1]
= 1 + δpL,

ΠCR\L = 3 + δ [(1 − pR)3 + pRµ] ,
ΠDR\L = µ + δ [(1 − pR)3 + pRµ] .

The first four expressions are the equilibrium two-period payoffs. For exam-
ple, ΠCL is the two-period payoff if the government’s previous action is C,
and the prescribed action is L, which the agent in question follows. On the
other hand, the second four expressions are the two-period payoffs when the
agent makes a unilateral deviation. For example, ΠCL\R is the payoff of a
single private agent playing R while the government’s previous action is C
and all other agents choose L.

The following proposition completely characterizes the set of Markov
perfect equilibria for the discount factor greater than 0.5.

Proposition 3.2 Let δ > 1/2. Then the set of MPE’s is characterized as
follows.

1. if µ ≥ 1 − 3δ, then ((pL, pR), ([L], 1
3δ )) where

pL<
µ + 3δ − 1
δ(4 − µ)

,

and
pR ≥ µ + 3δ − 1

δ(4 − µ)
.
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2. if 1 − 3δ ≥ µ > 1 − 3/δ, then (([C], [C]), ([L], [R]))

3. if µ < 1 − 3/δ, then (([C], [C]), ([L], [R])), (([D], [D]), ([R], [R])) and
((pL, pR), (1 − 1

3δ , [R])) where

pL<
3(1 + δ)
δ(4 − µ)

,

and
pR ≥ 3(1 + δ)

δ(4 − µ)
.

Proof. See Appendix A.

The first type of equilibrium arises when µ is not too small, or greater
than 1−3/δ, e.g., µ = 0. In every subgame perfect equilibrium of such games,
the expected payoff of the government is 3 at state L, which is the payoff
from the Ramsey outcome of the one shot policy game. Note that in this
equilibrium, the government sometimes deviates from the Ramsey outcome
to attain a higher payoff, and the private sector reacts to it probabilistically.
Once the system falls into the Kydland-Prescott outcome, it reverts back
to the Ramsey outcome by the government’s shift in policy. In some sense,
this forms a cycle, in which the government’s policy oscillates between the
KP outcome and the Ramsey outcome.9

As δ goes to one, the range of µ satisfying Case 2 vanishes. In the limit,
the threshold between Case 1 and Case 3 becomes µ = −2. This threshold
is important since L becomes the unique best response whenever C is taken
in the previous period if (C,L) risk-dominates (D,R), and R becomes the
unique best response whenever D is taken in the other case. Indeed, in Case
3, the government’s expected payoff is 1 at any state in the limit.

4 Policy Games with a Continuum of Actions

While we obtain a complete characterization of the Markov perfect equilib-
ria in a simple game, agents in a typical policy game are endowed with a
continuum of feasible actions rather than just two. In order to show the key
findings in 2×2 games can be extended, this section analyzes the alternating

9While this observation is somewhat consistent with the findings of Sargent (1999), it
is largely due to the fact that the action space of the government is discrete, as the later
analysis reveals.
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games in which the action space of each player is a closed interval [0, α] on
the real line (α > 0).

We would like to examine a situation examined in Lucas (1976) and
Kydland and Prescott (1977) in which the government controls the inflation
rate y and the private sector’s “choice” variable x is interpreted as the
anticipated inflation rate. Following Sargent (1999), we let

v(y, x) = −(y − x)2 (5)

so that the private sector’s objective is to correctly forecast the inflation
rate selected by the government.

As for the government’s objective function, Sargent (1999) assumes

u(y, x) = −1
2

[
y2 + (U∗ − θ(y − x))2

]
, (6)

where U∗ is the natural unemployment rate, and U = U∗−θ(y−x) with θ > 0
represents the Phillips curve, which represents the relationship between the
inflation rate y and unemployment U .

While the quadratic utility function u simplifies the calculation, we need
only the following properties of u. Let B(x) be the one-shot best response
of the government against x.

A1. u(y, x) is twice continuously differentiable and strictly quasi-concave,
and B(x) is an increasing function of x. For a given y, u(y, x) is a
strictly decreasing function of x.

A2. ∀x < x′, ∀y < y′ ≤ B(x)

0 < u(y′, x) − u(y, x) < u(y′, x′) − u(y, x′).

A3. The component game has a pure strategy Nash equilibrium (yN , yN )
and a pure strategy Stackelberg equilibrium where the government is
a leader. The Stackelberg equilibrium strategy yR of the government,
called the Ramsey policy, is normalized to 0 so that

0 = yR < yN ≤ α.

Let

ϕ(α) =
dy

dx

∣∣∣∣
u=u(α,α)

= − ∂u/∂x

∂u/∂y

∣∣∣∣
x=y=α

,
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for α ∈ [0, α]. This is the slope of the indifference curve at (α,α): the
marginal rate of substitution between y and x at (α,α). This function
plays an important role in characterizing the range of the Markov perfect
equilibria.

If x is the anticipated inflation rate, one can interpret x as the level
of reputation of the government. A1 says that the government’s payoff is
decreasing as its reputation for maintaining low inflation deteriorates: the
optimally forecasted inflation rate is monotonically related to the actual
inflation rate. Recall that the government is trying to exploit the trade-
off between unemployment and inflation, which induces the government to
use high inflation policy. By the same token, if the government wants to
restore its reputation as an inflation fighter, it must implement low inflation
policy, which may decrease its one-shot payoff. A2 says that the cost of
restoring reputation increases as the government’s reputation deteriorates.
A3 preserves some important features of the policy game which uses (6). It
is straightforward to verify that at the Ramsey outcome,

ϕ(yR) ≥ 1,

and at the component game Nash equilibrium,

ϕ(yN ) = ∞.

Although we could generalize v, too, we keep it in its current form to simplify
our exposition.

In an equilibrium, given the government’s policy y, the private sector has
perfect foresight about the government’s future move. Thus, its response x
must satisfy

x =
y + δpr(x)

1 + δp
(7)

or equivalently, for each y, there exists a unique x so that

y = (1 + δp)x − δpr(x). (8)

Let F (x) denote the right hand side of (8):

F (x) ≡ (1 + δp)x − δpr(x).

Definition 4.1 g is consistent with r if

g(y) ∈ F−1(y) ∀y.
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Definition 4.2 r is a best response to g if for ∀x, r(x) solves (3).

The next proposition follows from the definition.

Proposition 4.3 (r, g) is a Markov perfect equilibrium if and only if r is a
best response to g, and g is consistent with r.

There may exist a Markov perfect equilibrium, which has no steady
state, or whose equilibrium path is chaotic. Since our main objective is to
see whether or not the Kydland-Prescott outcome can be sustained as a
steady state of an MPE, we shall focus on the characterization of an MPE
with a steady state.

Definition 4.4 α is a steady state if α = g(α) = r(α).

By the definition of steady state α,

α = g(r(α)) = r(g(α)).

Hence, if the government chooses α, then the private sector’s response is α,
to which α is the government’s (long-run) best response. As a result, the
government’s policy remains α for the rest of the game.

Lemma 4.5 For any g, if r is a best response to g, then r(x) is a weakly
increasing function of x.

Proof. See Appendix B

In general, a Markov perfect equilibrium entails randomization along and
off the equilibrium path. As we focus on Markov perfect equilibria with a
stead state, we essentially exclude those which entail randomization along
the equilibrium path. Since our analysis is based upon a subset of Markov
perfect equilibria, we need to establish the existence of a Markov perfect
equilibrium with steady state α.

Proposition 4.6 There exists a Markov perfect equilibrium with a steady
state.

Proof. See Appendix C

A Markov perfect equilibrium may have more than one steady states.
Yet, as the government becomes more patient, the set of steady states of a
Markov perfect equilibrium converges to a single point.
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Proposition 4.7 For a fixed δp ∈ (0, 1),

lim
δg→1

sup
{
α′ : g(α′) = α′} − inf

{
α′ : g(α′) = α′} = 0 (9)

Proof. See Appendix D

The next proposition gives upper and lower bounds for steady states in
Markov perfect equilibria.

Proposition 4.8 Let α be a steady state of a Markov perfect equilibrium.
Then,

1
δg

≤ ϕ(α) ≤ 1 + δp

δg
.

Proof. Since r ∈ S is increasing, r is differentiable almost everywhere. By
the same token, F is differentiable almost everywhere, and so is g. If r and F
are differentiable at x, then the first order condition must hold with respect
to y = F (x):

(1 − δg)
[
∂u(r(x), x)

∂y
+ δg

∂u(r(x), g(r(x)))
∂y

]

+
[
(1 − δg)δg

∂u(r(x), g(r(x)))
∂x

+ δ2
gU ′(g(r(x)))

]
g′(r(x)) = 0. (10)

By the envelope theorem,

U ′(g(r(x))) = (1 − δg)
∂u(r(g(r(x))), g(r(x)))

∂x
.

Then, we have

g′(r(x)) = − [∂u(r(x), x)/∂y + δg∂u(r(x), g(r(x)))/∂y]
δg [∂u(r(x), g(r(x)))/∂x + δg∂u(r(g(r(x))), g(r(x)))/∂x]

.

(11)

From (11), we have

g′(α) = − 1
δg

∂u(α,α)/∂y

∂u(α,α)/∂x
=

1
δg

dx

dy

∣∣∣∣
u=u(α,α)

.

Notice that the second term is the inverse of the marginal rate of substitution
of u at (α,α). It would be more convenient to write the above equation into

1
g′(α)

= δg
dy

dx

∣∣∣∣
u=u(α,α)

.
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From (8), we have
1

g′(α)
= 1 + δp − δpr

′(α).

Thus, we have

1
g′(α)

= 1 + δp − δpr
′(α) = δg

dy

dx

∣∣∣∣
u=u(α,α)

(12)

Let us assume r(0) 	= 0. Since r is weakly increasing, it first crosses the
45 degree line (y = x) from above, or to be precise,

0<
d−r(α)

dx
<1,

where d−r(·)/dx is the left derivative of r. Therefore, we have

1 ≤ 1
g′(α)

= 1 + δp − δp
d−r(α)

dx
= δg

dy

dx

∣∣∣∣
u=u(α,α)

= δgϕ(α) ≤ 1 + δp. (13)

Hence,

ϕ−1

(
1
δg

)
≤ α ≤ ϕ−1

(
1 + δp

δg

)
.

Q.E.D.

Note that as δg → 1 and δp → 0, α → 0: if the private sector becomes
very impatient while the government is patient, it can (almost) implement
the Ramsey policy. Similarly, as δg → 0, α converges to the one-shot, Nash-
equilibrium outcome: if the government becomes impatient, the only out-
come is to repeat the one-shot Nash equilibrium. Note that at the Kydland-
Prescott outcome, or the one-shot Nash equilibrium, the marginal rate of
substitution is infinite. Thus, no MPE with a steady state can sustain the
Kydland-Prescott outcome.

5 Example

A typical Markov perfect equilibrium entails a mixed strategy conditioned
on a certain state, which complicates the calculation of an equilibrium for
a general utility function. However, we can explicitly calculate the Markov
perfect equilibrium from (10) if the government’s (one-shot) payoff function
is quasi-linear: a concave function of y, and a linear function of x.10

10Barro (1986) used a similar formulation to calculate an equilibrium.
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While (10) offers an important clue about the equilibrium strategy of
each party, it is not sufficient to nail down a particular equilibrium, because
we need to check the restriction imposed by Lemma 4.5. Because the con-
struction reveals how (10) and Lemma 4.5 must be reconciled, this example,
albeit special, warrants a careful analysis.

Let

u(x, y) = −1
2
y2 + θU∗y − θU∗x. (14)

Note that this is equivalent to (6) in the limit of θ going to zero with θU∗

kept constant. Substituting (14) in (11), we obtain

g′(r(x)) =
1
δg

[
1 − r(x)

θU∗

]
. (15)

Letting y = r(x), we restrict y to the range of r. To calculate an equilibrium,
however, we first solve this ordinary differential equation without considering
the range to which it is applicable. Then, we proceed to take care of the
part outside this range. Solving the above ordinary differential equation
with y = r(x), we have

g(y) =
y

δg
− y2

2δgθU∗ + cα, (16)

where cα is determined if we impose a condition g(α) = α, in which case,
we have

cα = α

[
δg − 1

δg
+

α

2δgθU∗

]
.

Since r(x) satisfies

x =
g−1(x) + δpr(x)

1 + δp
,

we obtain

r(x) = − 1
δp

θU∗ +
1
δp

√
(θU∗)2 + 2δgθU∗(cα − x) +

1 + δp

δp
x,

or equivalently,

r(x) = − 1
δp

θU∗ +
1
δp

√
(θU∗ − α)2 + 2δgθU∗(α − x) +

1 + δp

δp
x. (17)

Since g(y) is concave, the value function satisfies the second-order condition.
Therefore, the optimality of g and r follows from the first order condition.
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Figure 2: solution

Let us denote this pair of r and g solving the first order condition as r̂ and
ĝ.

Unfortunately, (r̂, ĝ) has not given us an MPE (r∗, g∗) yet. Note that
equation (15) is applicable only in the range of [inf r∗(x), sup r∗(x)]. Since
r∗ and g∗ have to satisfy (17) and (16), respectively, in this range, inf r∗(x)
and sup r∗(x) must be the same as inf r̂(x) and sup r̂(x) . Therefore,

inf r(x) = r(0) = − 1
δp

θU∗ +
1
δp

√
(θU∗ − α)2 + 2δgθU∗α,

and

sup r(x) = r(x̂) =
1
δp

[
−1 +

δg

2(1 + δp)

]
θU∗+

1 + δp

δp
α+

1 + δp

2δpδgθU∗ (θU∗−α)2,

where
x̂ = α − δg

2(1 + δp)2
θU∗ +

1
2δgθU∗ (θU∗ − α)2

is calculated from r′(x) = 0. Note that for x ∈ (x̂, g(θU∗)), we have r̂′(x) <
0. Instead of having a negatively sloped portion, which violates Lemma 4.5,
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we replace it with a flat line, i.e.,

r∗(x) =
{

r̂(x) if x<x̂,

r(x̂) if x > x̂.

At the same time, the reaction function g of the private sector should also
be modified.

g∗(y) =

{
ĝ(y) if y<ŷ,

y+δpr(x̂)
1+δp

if y > ŷ,

where

ŷ =
(

1 − δg

1 + δp

)
θU∗

is calculated from ĝ(ŷ) = x̂. Note that g∗ is still concave, and, therefore,
the first-order condition is sufficient for optimality whenever this method is
applicable. Note also that this transformation from r̂ and ĝ to r∗ and g∗ is
applicable to the construction of an MPE only if x̂ > α, or

α <

(
1 − δg

1 + δp

)
θU∗ = ϕ−1

(
1 + δp

δg

)
,

as desired.
Roughly speaking, the set of Markov perfect equilibria is bounded from

above by the Ramsey outcome, but is bounded away from the KP outcome.
In section 3, the set of subgame perfect equilibrium outcomes, which contains
all Markov perfect equilibrium outcomes, converge to the Ramsey outcome.
In contrast, the steady state of the Markov perfect equilibrium constructed
above is bounded away from Ramsey and also from KP outcome. In fact,
this outcome meets the lower bound of the set of Markov perfect equilibria
characterized in section 4.

6 Concluding Remarks

In the dynamic policy game with no payoff-relevant link between periods,
we have a result similar to the folk theorem. In contrast, in alternating
move policy games, we sometimes have a sharp prediction. In particular,
the suboptimal KP outcome is eliminated from the set of equilibria. Because
of a payoff-relevant link between periods, the government can commit to a
lower inflation rate and affect the private sector’s response. Although the
alternating move games capture the essence of asynchronous decision mak-
ing processes, we need to investigate a more general form of asynchronous
decision-making processes to see how robust our conclusion is.
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Appendices

A Proof of Proposition 3.2

First of all, we have the following four inequalities for incentives of the
private sector. ΠCL ≥ ΠCL\R is equivalent to

3(1 + δ) ≥ δpL(4 − µ). (18)

ΠDL ≥ ΠDL\R is equivalent to

µ + 3δ − 1 ≥ δpL(4 − µ). (19)

ΠCR ≥ ΠCR\L is equivalent to

δpR(4 − µ) ≥ 3(1 + δ). (20)

ΠDR ≥ ΠDR\L is equivalent to

δpR(4 − µ) ≥ µ + 3δ − 1. (21)

We divide the situation into three cases.
Case I. VLC > VLD, or equivalently, VRC > VRD.

It implies pL = pR = 0. Then (18) holds, while (20) does not, which
implies qC = 0. On the other hand, (19) holds if and only if µ ≥ 1 − 3δ,
and (21) holds if and only if µ<1 − 3δ. Therefore, if µ > 1 − 3δ, then
qD = 0. But, in this case, using VCL = VDL − 1, we obtain VLC < VLD. A
contradiction. So suppose µ < 1 − 3δ. Then qD = 1 holds since (19) does
not. It is verified that qC = 0 and qD = 1 imply VLC > VLD, and therefore,
(([C], [C]), ([L], [R])) is the only MPE in this case if µ < 1−3δ, and no MPE
exists for this case if µ > 1 − 3δ.
Case II. VLC < VLD, or equivalently, VRC < VRD.

It implies pL = pR = 1. Then (21) holds, while (19) does not, which
implies qD = 1. On the other hand, (18) holds if and only if µ ≥ 1 − 3/δ,
and (20) holds if and only if µ<1 − 3/δ. Therefore, if µ > 1 − 3/δ, then
qC = 0. But this together with qD = 1 implies VLC > VLD. A contradiction.
Suppose µ < 1 − 3/δ. Then qC = 1 holds. It is verified that VLC < VLD.
Thus, in this case, (([D], [D]), ([R], [R])) is the only MPE if µ < 1−3/δ, and
no MPE exists if µ > 1 − 3/δ.
Case III. VLC = VLD, or equivalently, VRC = VRD.
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Case III-a. µ > 1 − 3/δ. In this subcase, qC = 0 since (18) holds, and (20)
does not for all (pL, pR). VLC = VLD implies

δqD(VDL − VDR) = 1 − δ2.

We have
VDL − VDR = 3(1 − δ2)

where we make use of VLC = VLD, VRC = VRD, and VLC − VRC = 3(1 − δ).
Combining the above two equations, we obtain

qD =
1
3δ

.

In order for (0, 1
3δ ) to be taken in an MPE, we need both (19) and (21).

Therefore,

pL<
µ + 3δ − 1
δ(4 − µ)

,

and
pR ≥ µ + 3δ − 1

δ(4 − µ)
.

Thus, this type of equilibrium exists if and only if

0<
µ + 3δ − 1
δ(4 − µ)

<1.

This inequality holds if and only if µ ≥ 1 − 3δ.
Case III-b. µ < 1 − 3/δ. In this subcase, qD = 1 since (21) holds, and (19)
does not for all (pL, pR). VLC = VLD implies

δ(1 − qC)(VCL − VCR) = 1 − δ2.

Using VLC − VRC = 3(1 − δ), we obtain 3δ(1 − qC) = 1, or

qC = 1 − 1
3δ

.

We need
pL<

3(1 + δ)
δ(4 − µ)

,

and
pR ≥ 3(1 + δ)

δ(4 − µ)
.

This type of equilibrium exists if and only if µ<1 − 3/δ as desired.
This exhausts all the possibilities. Summarizing the result, we obtain

the set of equilibria as we claimed.
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B Proof of Lemma 4.5

Let yi = r(xi) and x1 > x2. Since yi is an optimal solution under state xi,

(1 − δg) [u(y1, x1) + δgu(y1, g(y1))] + δ2
gU(g(y1))

≥ (1 − δg) [u(y2, x1) + δgu(y2, g(y2))] + δ2
gU(g(y2)) (22)

and

(1 − δg) [u(y2, x2) + δgu(y2, g(y2))] + δ2
gU(g(y2))

≥ (1 − δg) [u(y1, x2) + δgu(y1, g(y1))] + δ2
gU(g(y1)). (23)

By adding (22) to (23), and rearranging the terms, we have

u(y1, x1) + u(y2, x2) ≥ u(y2, x1) + u(y1, x2).

Since x1 > x2,

u(y1, x1) − u(y1, x2)
x1 − x2

≥ u(y2, x1) − u(y2, x2)
x1 − x2

. (24)

Since A2 implies that
∂2u(y, x)

∂y∂x
> 0,

(24) implies that y1 ≥ y2 as desired. Q.E.D.

C Proof of Proposition 4.6

Let S be the set of all weakly increasing continuous-from-right functions
over [0, α]. We can endow S with a weak topology: fn → f if fn(x) → f(x)
pointwise whenever f is continuous at x. Note that S can be made a metric
space, convex and compact with respect to the weak topology.

We shall construct a correspondence

Φ : S × S → S × S

where Φ = (Φ1,Φ2). Fix (r, g) ∈ S × S. Given r, define

F (x) = (1 + δp)x − δpr(x).
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Recall that g is the inverse function of F , whenever F is invertible. Because
F−1(y) in general has more than a single value, we need to do some work.
Define

g(y) = inf
{
g(y) : g ∈ S, g(y) ∈ F−1(x)

}
and

g(y) = sup
{
g(y) : g ∈ S, g(y) ∈ F−1(x)

}
.

Let
Φ2(r, g) = co

({g, g})
where co is the convex hull.

Given g ∈ S, the government solves the optimization problem. From
Lemma 4.5, we know that any optimal response r must be weakly increasing.
Since r jumps at x only if the government has multiple best response under
x, we can always choose r ∈ S. Let

Φ1(r, g) = co ({r ∈ S : r is a best response to g}) .

By construction, the correspondence Φ is upper hemi-continuous and convex
valued. Since S×S is compact and convex, Glicksberg’s fixed point theorem
implies that there exists (r, g) ∈ S × S such that

(r, g) ∈ Φ(r, g).

It is straightforward to prove that any fixed point of Φ is a Markov perfect
equilibrium.

It remains to prove the existence of a steady state. Fix a Markov perfect
equilibrium (r, g) ∈ S ×S. If r is a continuous function, the Brouwer’s fixed
point theorem implies that there exists α ∈ [0, α] such that

r(α) = α.

While r can be discontinuous at some x ∈ [0, α], r must jump upward at
x. To obtain the existence of a steady state, we can invoke the existence
theorem by Roberts and Sonnenschein (1976) that extends the Brouwer’s
fixed point theorem to the class of mapping which has upward jump discon-
tinuities. Q.E.D.
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D Proof of Proposition 4.7

Suppose the contrary: ∃ε > 0 and {δg,j} such that δg,j → 1, but

inf
j

[
sup

{
α′ : g(α′) = α′} − inf

{
α′ : g(α′) = α′}] ≥ ε.

Let αsup = sup {α′ : g(α′) = α′} and αinf = inf {α′ : g(α′) = α′}. By the
Markov perfection, playing αsup always is a Nash equilibrium. Similarly,
playing αinf always is a Nash equilibrium. Since αsup > αinf , u(αinf , αinf ) >
u(αsup, αsup). But, the long run payoff of switching from αsup to αinf and
playing continuously αinf is

(1 − δg,j)u(αinf , αsup) + δg,ju(αinf , αinf )

which is larger than u(αsup, αsup) for a sufficiently large δg,j . This contra-
diction proves (9). Q.E.D.
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